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Part 1

In this paper...

 We compare two varieties of local memory,
for a preemptive multitasking real-time system, 
using schedulability tests for the comparison



Schedulability Test

 Given a task set:

 n tasks: t
1
, t

2
, …, t

n

 Deadline, period, etc. defined for each t

 and given a system:

 CPU, memory, RTOS, resource policies

 are the tasks guaranteed to meet their 
deadlines?

 Are they schedulable?



Schedulability Comparison

 Two schedulability tests together

 Same task set:

 n tasks: t
1
, t

2
, …, t

n

 Deadline, period, etc. defined for each t

 Two different systems:

 CPU, memory, RTOS, resource policy 1

 CPU, memory, RTOS, resource policy 2

 Interesting case: when the task set is 

schedulable with one system and not the other



Local Memory

 External memory accesses are slow (latency)

 Tasks store frequently-used code/data in local 
memory

 Two alternative ways to manage local memory:

 Cache

 Scratchpad Memory (SPM)



Local Memory: Cache

 Cache holds a copy of recently-accessed 
code/data from external memory

 Cache is filled as a side-effect of execution



Local Memory: Cache

 Easy to write tasks that use cache

 Quite difficult to analyse tasks that use cache

 Determining a precise bound on the execution 

time:

 Not possible for all types of cache 
(pessimism, tool support)

 Not possible for all types of task



Local Memory: SPM

 SPM is used explicitly by the task 

 Code/data moved to/from SPM as required



Local Memory: SPM

 Easy timing analysis

 But, it is harder to write tasks that use SPM

 Tricky memory management issues

 Limited tool support

 Cache vs. SPM may be regarded as a tradeoff 

between difficulty of programming and difficulty 
of timing analysis



Preemptive Multitasking

 At all times, the highest priority
runnable task is executed by the CPU
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Multitasking and Cache

 If local memory is cache:

 Cache hardware is not aware of task switches

 Different tasks compete for cache space

and can evict each other's cache blocks
(e.g. due to preemption)

 Schedulability test considers the time cost of 

reloading evicted cache blocks



Multitasking and SPM

 If local memory is SPM:

 SPM is not aware of task switches

 RTOS must manage SPM as part of the task 

context

 To do this, we apply a “multitasking SPM 
reuse scheme” (MSRS) at run-time*

 MSRS pages SPM space in/out as required

 Schedulability test considers the time cost of 

paging

* see [10] and section I in the paper



Part 2

Preemption-related delays
and response time analysis



Response Time Analysis (RTA)

 Worst-Case Response Time, R
i
– the maximum 

interval between release and completion of t
i
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Response Time Analysis (RTA)

 The famous RTA equation determines Ri:

 Used as a schedulability test: Ri ≤ Di



t
1

Idealism 1

 Eqn ignores context switching time

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
1

t
2

t
2

Incorporated by adding CSto, CSfrom to RTA equation

CSto
CSfrom



Idealism 2

 Eqn ignores blocking time
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Idealism 3

 Eqn ignores preemption related delay

 Distinct from blocking, context switching

 Preemption related delay is additional 
execution time imposed upon low-priority 
tasks as a result of preemption



Preemption Related Delay

 X is a resource used by both tasks:

Preemption related 
delay incurredt

1
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Non-ideal RTA Equation

Execution and 
interference only

Execution and 
interference, context-
switching, blocking, and
preemption-related delay 



 Preemption-related delay caused by 
eviction of cache blocks

 Consider a small cache containing two 
blocks A, B

 Cache states represented as:

Cache-Related Preemption Delay



Cache-Related Preemption Delay

 Example of CRPD:
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Cache-Related Preemption Delay

 Example of CRPD:
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Cache-Related Preemption Delay

 Example of CRPD:
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CRPD Modeling

 CRPD may be bounded by considering the 
size of set unions and intersections:

 The set of cache blocks used by a task

(evicting cache blocks, ECBs)

 The set of cache blocks reused by a task
(useful cache blocks, UCBs)

 Various investigations in previous work* 

* see section II in the paper



Scratchpad-Related
Preemption Delay (SRPD)

 Preemption-related delay is caused by 

“multitasking SPM reuse scheme” (MSRS)

 RTOS pages SPM space in/out at each context 
switch as required by each task

 The time cost of paging is SRPD



MSRS

 Multitasking SPM Reuse Scheme

 Example: t
1 
uses 1 SPM block, t

2 
uses 2
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Part 3

Experiments and Results



Experimental Implementation

 Working model built on FPGA:

 Has both SPM and Cache (use one or the other)

 DMA unit for fast copies to/from SPM



Experimental Method
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Experimental Method

Generated task sets

 Tasks are benchmark programs

 WCET analysis using aiT software

 System timings (“Save” / “Restore” etc.) from FPGA 

implementation

 Tasks partitioned into regions for SPM
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Experimental Method

 Upper bound on preemption-related delay 
computed by either CRPD or SRPD for each 
pair of tasks
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Experimental Method

 Response-time analysis using CRPD/SRPD

 Task periods are the same for both systems

 Other parameters (e.g. C, B) are somewhat 
implementation-dependent
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Experimental Method

 Schedulability test repeated for 100,000 task 
sets for each utilization

U = {0.01, 0.02, …, 0.99}
and for both types of system
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Contention for local memory

 MSRS is most successful when there is a 
great deal of contention for local memory 
space

 e.g. many tasks

 e.g. small local memory



Contention for local memory

 Contention for cache blocks occurs 
whenever a preempting task evicts a 
block being reused by a preempted task

 More likely with more tasks

 More likely with smaller memory

 Contention for SPM blocks always occurs

 Cost is independent of the number of tasks

(Cost depends only on the preempting task)



Observations

 MSRS is similar to cache for schedulability

 Results are (generally) close

 Some task sets are better suited to
cache or MSRS, due to contention

 MSRS may be improved

 We assumed a naïve implementation

 Subsequent work considers improvements



Conclusions

 Compared two approaches for sharing 
local memory between tasks in a real-
time system (cache/MSRS)

 MSRS is better than cache for some task 
sets – in most cases, it is similar

 Both local memory types are valid
choices for real-time systems



Thank you!



LSI's question
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randomly picked with U in [0.3, 0.8] and n = 15, and if a task set was schedulable with only 
one, we found the highest-priority task that missed its deadline and added it to this chart.
→ Whether you use cache or MSRS, there is a similar distribution.
→ The usual cause for higher priorities is blocking, not MSRS
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Simulator Trace (MSRS)

Simulator trace of an RTOS with four tasks (plus idle) running with 
MSRS. Black line = execution. Coloured marks = MSRS operations.



Simulator Trace (Cache)

Previous slide, replotted for cache. Coloured marks represent cache 
misses. Some of these are due to preemption.


