Investigation of Scratchpad Memory
for Preemptive Multitasking

Jack Whitham, Robert I. Davis and Neil Audsley*
Sebastian Altmeyer**
Claire Maiza***

* RTS Group, University of York (UK)
** Compiler Design Lab, Saarland University (Germany)
*** Verimag, INP Grenoble (France)

Part 1

In this paper...

« We compare two varieties of local memory,
for a preemptive multitasking real-time system,
using schedulability tests for the comparison

Schedulability Test

 Given a task set:
. ntasks: 7, 75, ..., 7,

« Deadline, period, etc. defined for each ¢

. and given a system:

« CPU, memory, RTOS, resource policies

. are the tasks guaranteed to meet their
deadlines?

« Are they schedulable?

Schedulability Comparison

Two schedulability tests together
Same task set:

. ntasks: 7, 75, ..., 7,

« Deadline, period, etc. defined for each ¢
Two different systems:

« CPU, memory, RTOS, resource policy 1
« CPU, memory, RTOS, resource policy 2

Interesting case: when the task set is
schedulable with one system and not the other

Local Memory

« External memory accesses are slow (latency)

« Tasks store frequently-used code/data in local
memory

. TWo alternative ways to manage local memory:

. Cache
« Scratchpad Memory (SPM)

Local Memory: Cache

« Cache holds a copy of recently-accessed
code/data from external memory

. Cache is filled as a side-effect of execution

CPU

NV [BUIS)XS

Local Memory: Cache

« Easy to write tasks that use cache
« Quite difficult to analyse tasks that use cache

. Determining a precise bound on the execution
time:

« Not possible for all types of cache
(pessimism, tool support)

« Not possible for all types of task

Local Memory: SPM

« SPM is used explicitly by the task

« Code/data moved to/from SPM as required

CPU

NV [BUIS)XS

Local Memory: SPM

. Easy timing analysis
« But, it is harder to write tasks that use SPM
. Tricky memory management issues

« Limited tool support

« Cache vs. SPM may be regarded as a tradeoff
between difficulty of programming and difficulty
of timing analysis

Preemptive Multitasking

. At all times, the highest priority
runnable task is executed by the CPU

7, released
r, completes

Tl / TZ %/TZ resu :
=" W

I | Time

7, preempted

task priority

r,and z, are runnable; z, experiences interference as r, has a higher priority

Multitasking and Cache

. If local memory is cache:

. Cache hardware is not aware of task switches

. Different tasks compete for cache space
and can evict each other's cache blocks
(e.g. due to preemption)

« Schedulability test considers the time cost of
reloading evicted cache blocks

Multitasking and SPM

. If local memory is SPM:

SPM is not aware of task switches

RTOS must manage SPM as part of the task
context

To do this, we apply a "multitasking SPM
reuse scheme” (MSRS) at run-time*

MSRS pages SPM space in/out as required

Schedulability test considers the time cost of
paging

* see [10] and section | in the paper

Part 2

Preemption-related delays
and response time analysis

Response Time Analysis (RTA)

. Worst-Case Response Time, R, — the maximum
interval between release and completion of

b“
o 7, released
i r, completes 7, released 7, completes
X
)}
i /
“ ‘ “ “ I 0
R
1 T
¥z ¥z ‘
— >
R, X
Time

Response Time Analysis (RTA)

. The famous RTA equation determines R..

Rq; — C@ ‘|‘ E T Cj
] : J
7_ IS 1P(_1) _r
Execution of ¢ Interference
’ (from higher
priority tasks)

. Used as a schedulability test: R; < D;

Idealism 1

. Egn ignores context switching time

task priority

FI | rg

I Time

Incorporated by adding CS'™, CS™™ to RTA equation

Idealism 2

. Egn ignores blocking time

Critical section in low priority task
1 High priority task blocked ‘

T

task priority

41

Time

Incorporated by adding B, to RTA equation (blocking due to task z.)

Idealism 3

« Egn ignores preemption related delay

. Distinct from blocking, context switching

. Preemption related delay is additional
execution time imposed upon low-priority
tasks as a result of preemption

Preemption Related Delay

« X is a resource used by both tasks:

task priority

7, uses X

7, uses X, replacing z,

7, uses X, _
: <— Preemption related

!

replacing 7, _
delay incurred

———-

o

\ Time
Interference

Non-ideal RTA Equation

R;
R C _I_ Z T J Execution and
J interference only

jehp(i)
4
‘R

T;

R; = B;—|—Cst0 —I_C;_I_ Z (Csto‘l‘cf ‘|‘Csﬁ‘0m +’Yr;)

jehp(i)

Execution and
interference, context-
switching, blocking, and
preemption-related delay

Cache-Related Preemption Delay

. Preemption-related delay caused by
eviction of cache blocks

. Consider a small cache containing two
blocks A, B

« Cache states represented as:

A 5 Z,
B ?73 Tf

Empty A, Binuseby A, Binuse by
same task different tasks

Cache-Related Preemption Delay

. Example of CRPD:

7, Uses cache
blocks A, B

task priority

—(-
l\;\\

I

l\:\\

Time

Cache A T,
state B .

Cache-Related Preemption Delay

. Example of CRPD:

7, Uses cache
blocks A, B 7, uses cache block B

task priority

—l-
l\;\\
>
>_
l\:\\

Time

Cache A 7 7,
State B . .

Cache-Related Preemption Delay

. Example of CRPD:

7, Uses cache _
blocks A, B Cache miss due
, 7, uses cache block B/ to preemption

task priority

YI 7, uses B again

0
5
>
p
W0

Time

Cache A 7, 7, r,
state B . - -,

CRPD Modeling

« CRPD may be bounded by considering the
size of set unions and intersections:

« The set of cache blocks used by a task
(evicting cache blocks, ECBs)

« The set of cache blocks reused by a task
(useful cache blocks, UCBs)

. Various investigations in previous work*

* see section Il in the paper

Scratchpad-Related
Preemption Delay (SRPD)

« Preemption-related delay is caused by
“multitasking SPM reuse scheme” (MSRS)

« RTOS pages SPM space in/out at each context
switch as required by each task

. The time cost of paging is SRPD

MSRS

. Multitasking SPM Reuse Scheme
. Example: 7, uses 1 SPM block, 7, uses 2

“Save” - RTOS unloads 7, from 1 “Restore” - RTOS restores
SPM block and loads z, instead 7, usage of SPM

Time

SPM A 7, @ 7
State

Part 3

Experiments and Results

Experimental Implementation

. Working model built on FPGA:

| | |-cache (2KB)
Microblaze < m
CPU Q 5
- E::
B
o l Memory %
L r Controller =
MSRS DMA unit [™ XCL ul

« Has both SPM and Cache (use one or the other)
« DMA unit for fast copies to/from SPM

18S)sel

Experimental Method

CRPD
analysis

CRPD-RTA
analysis

Schedulable
with cache?

SRPD
analysis

SRPD-RTA
analysis

Schedulable
with MSRS?

Comparison results

1.0 permsmnmsrmge 0 : -

T, SRPD-RTA (good) —

s, CRPD-RTA ——
y

Experimental Method

18S)sel

CRPD
e .
nardwal analysis
che
e Ca
assul®
aSSUm
€S
With MSZM hardware
S polic,, SRPD
analysis

Generated task sets

« Tasks are benchmark programs

CRPD-RTA
analysis

Schedulable
with cache?

SRPD-RTA
analysis

Schedulable
with MSRS?

Comparison results

« WCET analysis using aiT software

« System timings ("Save” / "Restore” etc.) from FPGA

implementation

« Tasks partitioned into regions for SPM

18S)sel

Experimental Method

CRPD

CRPD-RTA
analysis

Schedulable
with cache?

e .
nardwal analysis
e cache
assy

aSSUm
e
With SPN1hardW
MSRS . dre
pO//Cy SRPD

analysis

SRPD-RTA
analysis

Schedulable
with MSRS?

Comparison results

|

« Upper bound on preemption-related delay
computed by either CRPD or SRPD for each

pair of tasks

18S)sel

Experimental Method

CRPD

CRPD-RTA
analysis

Schedulable
with cache?

e .
nardwal analysis
me cach®
assy

e
With SPl\’“?f:lrdv,,
MSRS . dre
pO/ICy SRPD

analysis

SRPD-RTA
analysis

Schedulable
with MSRS?

Comparison results

|

« Response-time analysis using CRPD/SRPD
« Task periods are the same for both systems
« Other parameters (e.g. C, B) are somewhat

implementation-dependent

18S)sel

Experimental Method

CRPD

CRPD-RTA
analysis

Schedulable
with cache?

e .
nardwal analysis
e cache
assy

aSSUm
e
With SPl\’“?f:lrdv,,
MSRS . dre
pO//Cy SRPD

analysis

SRPD-RTA
analysis

Schedulable
with MSRS?

Comparison results

|

« Schedulability test repeated for 100,000 task

sets for each utilization
U = {0.01, 0.02, ..., 0.99}
and for both types of system

Results

100%

===Schedulable with MSRS,

90% 1 according to SRPD-RTA
===Schedulable with cache,
80% 1 according to CRPD-RTA

70% o

60% o

50% -

40% -

30% -

20% -

Proportion of Task Sets found to be Schedulable

10% +o

0%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilization

100,000 task sets of
size 15 generated

Fig 5, simplified, SRPD-RTA (real) and CRPD only

Results

6% 1

=e==Schedulable with MSRS but not
cache

5% - === Schedulable with cache but not
MSRS

4% o

3% -

2% +

Proportion of Task Sets found to be Schedulable
<

0%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilization

Fig 4 (modified) based on SRPD (real) results

MSRS and Cache Comparison

« Incomparable

. Some task sets are schedulable with one and
not the other — neither dominates

« When is each preferable?

. A weighted measure of schedulability
allows us to compare across many
different utilisations

. Approximately, the
area under the curve

v
Number
schedulable

utilisation

Effect of Task Set Size

0.70

0.65

=e=|\|SRS
===Cache

o To) o Ty) o
© n 0 < <
o o o o o

Ajige|npayds jo ainseay paybiapn

0.35

0.30

15 20 25 30

Task Set Size

10

Contention for local memory

« MSRS is most successful when there is a
great deal of contention for local memory
space
. €.9. many tasks
. €.g. small local memory

Contention for local memory

« Contention for cache blocks occurs
whenever a preempting task evicts a
block being reused by a preempted task

. More likely with more tasks
« More likely with smaller memory
« Contention for SPM blocks always occurs

. Cost is independent of the number of tasks
(Cost depends only on the preempting task)

Observations

« MSRS is similar to cache for schedulability

. Results are (generally) close

. Some task sets are better suited to
cache or MSRS, due to contention

« MSRS may be improved

. We assumed a nailve implementation
. Subsequent work considers improvements

Conclusions

« Compared two approaches for sharing
local memory between tasks in a real-
time system (cache/MSRS)

« MSRS is better than cache for some task
sets — in most cases, it is similar

. Both local memory types are valid
choices for real-time systems

Thank you!

100% =

90% =

80% =

70% =

60% =

50% =

40% =

30% =

Proportion of deadline misses

20%

10% =

0% =

LSI's question

3 4 5 6 7 8 9 10 11 12 13 14

Highest priority task that missed a deadline

B SPM count
B Cache count

Is the highest priority task more likely to miss a deadline with MSRS? According to our
experiments, this isn't significant. We performed SRPD-RTA and CRPD-RTA for task sets
randomly picked with U in [0.3, 0.8] and n = 15, and if a task set was schedulable with only
one, we found the highest-priority task that missed its deadline and added it to this chart.
— Whether you use cache or MSRS, there is a similar distribution.
— The usual cause for higher priorities is blocking, not MSRS

Effect of Local Memory Size

0.60 -

0.50 -+

0.40 +o

0.30 +

0.20

Weighted Measure of Schedulability

0.10 -

= Cache
—)\|SRS

0.00 T T T T
5.0 6.0 7.0 8.0 9.0

log2 of Local Memory Size

The set of available benchmarks depends on the memory size —
which is why the graph has this strange step shape. The SPM
approach cannot make use of more than about 2Kb — but the cache
can, which is why it does really well with large local memory

10.0

11.0

Baseline was 128
blocks (27)

Simulator Trace (MSRS)

Execution
Reztore |
Load
Saw H
Cache Hiss ©®
fir XL -
natnult - wo— —m
=
-
% fdct s =N |
-
o
bzortli88 XI XT i I i I —N i—
idle ‘ . J J J _
|
a 8.5 1 1.5 2

Simulator trace of an RTOS with four tasks (plus idle) running with
MSRS. Black line = execution. Coloured marks = MSRS operations.

Simulator Trace (Cache)

T
Execution
Reztore]
Load
Save *
Cache Hiss ©®
fir H [2 |
natnult - | ! 3| [o]
=
-
% fdct | [] [| []
-
o
bzortli88 ﬂ H (W (W Hj
idle H .
1 | | |
a 8.5 1 1.5 2

Tine

Previous slide, replotted for cache. Coloured marks represent cache
misses. Some of these are due to preemption.

