
Investigation of Scratchpad Memory
for Preemptive Multitasking

Jack Whitham, Robert I. Davis and Neil Audsley*

Sebastian Altmeyer**
Claire Maiza***

* RTS Group, University of York (UK)
** Compiler Design Lab, Saarland University (Germany)
*** Verimag, INP Grenoble (France)

Part 1

In this paper...

 We compare two varieties of local memory,
for a preemptive multitasking real-time system,
using schedulability tests for the comparison

Schedulability Test

 Given a task set:

 n tasks: t
1
, t

2
, …, t

n

 Deadline, period, etc. defined for each t

 and given a system:

 CPU, memory, RTOS, resource policies

 are the tasks guaranteed to meet their
deadlines?

 Are they schedulable?

Schedulability Comparison

 Two schedulability tests together

 Same task set:

 n tasks: t
1
, t

2
, …, t

n

 Deadline, period, etc. defined for each t

 Two different systems:

 CPU, memory, RTOS, resource policy 1

 CPU, memory, RTOS, resource policy 2

 Interesting case: when the task set is

schedulable with one system and not the other

Local Memory

 External memory accesses are slow (latency)

 Tasks store frequently-used code/data in local
memory

 Two alternative ways to manage local memory:

 Cache

 Scratchpad Memory (SPM)

Local Memory: Cache

 Cache holds a copy of recently-accessed
code/data from external memory

 Cache is filled as a side-effect of execution

Local Memory: Cache

 Easy to write tasks that use cache

 Quite difficult to analyse tasks that use cache

 Determining a precise bound on the execution

time:

 Not possible for all types of cache
(pessimism, tool support)

 Not possible for all types of task

Local Memory: SPM

 SPM is used explicitly by the task

 Code/data moved to/from SPM as required

Local Memory: SPM

 Easy timing analysis

 But, it is harder to write tasks that use SPM

 Tricky memory management issues

 Limited tool support

 Cache vs. SPM may be regarded as a tradeoff

between difficulty of programming and difficulty
of timing analysis

Preemptive Multitasking

 At all times, the highest priority
runnable task is executed by the CPU

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
1

t
1

t
1

t
2

t

2

t
2

t
1
and t

2
are runnable; t

2
experiences interference as t

1
has a higher priority

t
2

preempted

t
2

resumes

t
1
released

t
1

completes

Multitasking and Cache

 If local memory is cache:

 Cache hardware is not aware of task switches

 Different tasks compete for cache space

and can evict each other's cache blocks
(e.g. due to preemption)

 Schedulability test considers the time cost of

reloading evicted cache blocks

Multitasking and SPM

 If local memory is SPM:

 SPM is not aware of task switches

 RTOS must manage SPM as part of the task

context

 To do this, we apply a “multitasking SPM
reuse scheme” (MSRS) at run-time*

 MSRS pages SPM space in/out as required

 Schedulability test considers the time cost of

paging

* see [10] and section I in the paper

Part 2

Preemption-related delays
and response time analysis

Response Time Analysis (RTA)

 Worst-Case Response Time, R
i
– the maximum

interval between release and completion of t
i

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
1

t
1

t
1

t
2

t

2

t
2

t
1
released

t
1

completes t
2
released t

2
completes

R
2

R
1

Response Time Analysis (RTA)

 The famous RTA equation determines Ri:

 Used as a schedulability test: Ri ≤ Di

t
1

Idealism 1

 Eqn ignores context switching time

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
1

t
2

t
2

Incorporated by adding CSto, CSfrom to RTA equation

CSto
CSfrom

Idealism 2

 Eqn ignores blocking time

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
1

t
2

t
2

Incorporated by adding B
i
to RTA equation (blocking due to task t

i
)

Critical section in low priority task

High priority task blocked

Idealism 3

 Eqn ignores preemption related delay

 Distinct from blocking, context switching

 Preemption related delay is additional
execution time imposed upon low-priority
tasks as a result of preemption

Preemption Related Delay

 X is a resource used by both tasks:

Preemption related
delay incurredt

1

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
2

t
2

t
1

uses X, replacing t
2

t
2

uses X

t
2

uses X,

replacing t
1

Interference

Non-ideal RTA Equation

Execution and
interference only

Execution and
interference, context-
switching, blocking, and
preemption-related delay

 Preemption-related delay caused by
eviction of cache blocks

 Consider a small cache containing two
blocks A, B

 Cache states represented as:

Cache-Related Preemption Delay

Cache-Related Preemption Delay

 Example of CRPD:

t
1

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
2

t
2

t
2

uses cache

blocks A, B

t
2

t
2

A

B

Cache
state

Cache-Related Preemption Delay

 Example of CRPD:

t
1

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
2

t
2

t
1

uses cache block B

t
2

uses cache

blocks A, B

t
2

t
2

t
2

t
1

A

B

Cache
state

Cache-Related Preemption Delay

 Example of CRPD:

t
1

Time

ta
s
k
 p

ri
o
ri
ty

t
1

t
2

t
2

t
1

uses cache block B

t
2

uses cache

blocks A, B

t
2

uses B again

t
2

t
2

t
2

t
1

A

Cache miss due
to preemption

B

t
2

t
2

Cache
state

CRPD Modeling

 CRPD may be bounded by considering the
size of set unions and intersections:

 The set of cache blocks used by a task

(evicting cache blocks, ECBs)

 The set of cache blocks reused by a task
(useful cache blocks, UCBs)

 Various investigations in previous work*

* see section II in the paper

Scratchpad-Related
Preemption Delay (SRPD)

 Preemption-related delay is caused by

“multitasking SPM reuse scheme” (MSRS)

 RTOS pages SPM space in/out at each context
switch as required by each task

 The time cost of paging is SRPD

MSRS

 Multitasking SPM Reuse Scheme

 Example: t
1
uses 1 SPM block, t

2
uses 2

t
1

Time

t
2

“Save” - RTOS unloads t
2

from 1
SPM block and loads t

1
instead

t
2

t
2

t
2

A

B

t
2

t
2

SPM
state

t
2

t
1

t
1

“Restore” - RTOS restores
t

2
usage of SPM

Part 3

Experiments and Results

Experimental Implementation

 Working model built on FPGA:

 Has both SPM and Cache (use one or the other)

 DMA unit for fast copies to/from SPM

Experimental Method

T
a

s
k

 S
e

t

C R P D

a n a ly s is

S R P D

a n a ly s is

C R P D -R TA

a n a ly s is

S R P D -R TA

a n a ly s is

S c h e d u la b le

w ith c a c h e ?

S c h e d u la b le

w ith M S R S ?

C o m p a ris o n re s u lts

a s s u m e c a c h e h a rd w a re

a s s u m e S P M h a rd w a re
w ith M S R S p o lic y

T
a

s
k

 S
e

t

C R P D

a n a ly s is

S R P D

a n a ly s is

C R P D -R TA

a n a ly s is

S R P D -R TA

a n a ly s is

S c h e d u la b le

w ith c a c h e ?

S c h e d u la b le

w ith M S R S ?

C o m p a ris o n re s u lts

a s s u m e c a c h e h a rd w a re

a s s u m e S P M h a rd w a re
w ith M S R S p o lic y

Experimental Method

Generated task sets

 Tasks are benchmark programs

 WCET analysis using aiT software

 System timings (“Save” / “Restore” etc.) from FPGA

implementation

 Tasks partitioned into regions for SPM

T
a

s
k

 S
e

t

C R P D

a n a ly s is

S R P D

a n a ly s is

C R P D -R TA

a n a ly s is

S R P D -R TA

a n a ly s is

S c h e d u la b le

w ith c a c h e ?

S c h e d u la b le

w ith M S R S ?

C o m p a ris o n re s u lts

a s s u m e c a c h e h a rd w a re

a s s u m e S P M h a rd w a re
w ith M S R S p o lic y

Experimental Method

 Upper bound on preemption-related delay
computed by either CRPD or SRPD for each
pair of tasks

T
a

s
k

 S
e

t

C R P D

a n a ly s is

S R P D

a n a ly s is

C R P D -R TA

a n a ly s is

S R P D -R TA

a n a ly s is

S c h e d u la b le

w ith c a c h e ?

S c h e d u la b le

w ith M S R S ?

C o m p a ris o n re s u lts

a s s u m e c a c h e h a rd w a re

a s s u m e S P M h a rd w a re
w ith M S R S p o lic y

Experimental Method

 Response-time analysis using CRPD/SRPD

 Task periods are the same for both systems

 Other parameters (e.g. C, B) are somewhat
implementation-dependent

T
a

s
k

 S
e

t

C R P D

a n a ly s is

S R P D

a n a ly s is

C R P D -R TA

a n a ly s is

S R P D -R TA

a n a ly s is

S c h e d u la b le

w ith c a c h e ?

S c h e d u la b le

w ith M S R S ?

C o m p a ris o n re s u lts

a s s u m e c a c h e h a rd w a re

a s s u m e S P M h a rd w a re
w ith M S R S p o lic y

Experimental Method

 Schedulability test repeated for 100,000 task
sets for each utilization

U = {0.01, 0.02, …, 0.99}
and for both types of system

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
T
a

s
k
 S

e
ts

 f
o

u
n

d
 t
o

 b
e

 S
c
h

e
d

u
la

b
le

Utilization

Schedulable with MSRS,
according to SRPD-RTA

Schedulable with cache,
according to CRPD-RTA

Results

Fig 5, simplified, SRPD-RTA (real) and CRPD only

100,000 task sets of
size 15 generated

0%

1%

2%

3%

4%

5%

6%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o
rt

io
n
 o

f
T
a
s
k
 S

e
ts

 f
o
u
n
d
 t
o
 b

e
 S

c
h
e
d
u
la

b
le

Utilization

Schedulable with MSRS but not
cache

Schedulable with cache but not
MSRS

Results

Fig 4 (modified) based on SRPD (real) results

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

0%

20%

40%

60%

80%

100%

MSRS and Cache Comparison

 Incomparable

 Some task sets are schedulable with one and
not the other – neither dominates

 When is each preferable?

 A weighted measure of schedulability
allows us to compare across many
different utilisations

 Approximately, the

area under the curve

utilisation

N
u

m
b

e
r

s
c
h

e
d

u
la

b
le

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 5 10 15 20 25 30

W
e

ig
h

te
d

 M
e

a
s
u

re
 o

f
S

c
h

e
d

u
la

b
ili

ty

Task Set Size

MSRS

Cache

Effect of Task Set Size

Contention for local memory

 MSRS is most successful when there is a
great deal of contention for local memory
space

 e.g. many tasks

 e.g. small local memory

Contention for local memory

 Contention for cache blocks occurs
whenever a preempting task evicts a
block being reused by a preempted task

 More likely with more tasks

 More likely with smaller memory

 Contention for SPM blocks always occurs

 Cost is independent of the number of tasks

(Cost depends only on the preempting task)

Observations

 MSRS is similar to cache for schedulability

 Results are (generally) close

 Some task sets are better suited to
cache or MSRS, due to contention

 MSRS may be improved

 We assumed a naïve implementation

 Subsequent work considers improvements

Conclusions

 Compared two approaches for sharing
local memory between tasks in a real-
time system (cache/MSRS)

 MSRS is better than cache for some task
sets – in most cases, it is similar

 Both local memory types are valid
choices for real-time systems

Thank you!

LSI's question

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPM count

Cache count

Highest priority task that missed a deadline

P
ro

p
o

rt
io

n
 o

f
d

e
a

d
li
n

e
 m

is
s

e
s

Is the highest priority task more likely to miss a deadline with MSRS? According to our
experiments, this isn't significant. We performed SRPD-RTA and CRPD-RTA for task sets
randomly picked with U in [0.3, 0.8] and n = 15, and if a task set was schedulable with only
one, we found the highest-priority task that missed its deadline and added it to this chart.
→ Whether you use cache or MSRS, there is a similar distribution.
→ The usual cause for higher priorities is blocking, not MSRS

0.00

0.10

0.20

0.30

0.40

0.50

0.60

5.0 6.0 7.0 8.0 9.0 10.0 11.0

W
e

ig
h

te
d

 M
e

a
s
u

re
 o

f
S

c
h

e
d

u
la

b
ili

ty

log2 of Local Memory Size

Cache

MSRS

Effect of Local Memory Size

The set of available benchmarks depends on the memory size –
which is why the graph has this strange step shape. The SPM
approach cannot make use of more than about 2Kb – but the cache
can, which is why it does really well with large local memory

Baseline was 128
blocks (27)

Simulator Trace (MSRS)

Simulator trace of an RTOS with four tasks (plus idle) running with
MSRS. Black line = execution. Coloured marks = MSRS operations.

Simulator Trace (Cache)

Previous slide, replotted for cache. Coloured marks represent cache
misses. Some of these are due to preemption.

