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Part 1

In this paper...

« We compare two varieties of local memory,
for a preemptive multitasking real-time system,
using schedulability tests for the comparison



Schedulability Test

 Given a task set:
. ntasks: 7, 75, ..., 7,

« Deadline, period, etc. defined for each ¢

. and given a system:

« CPU, memory, RTOS, resource policies

. are the tasks guaranteed to meet their
deadlines?

« Are they schedulable?



Schedulability Comparison

Two schedulability tests together
Same task set:

. ntasks: 7, 75, ..., 7,

« Deadline, period, etc. defined for each ¢
Two different systems:

« CPU, memory, RTOS, resource policy 1
« CPU, memory, RTOS, resource policy 2

Interesting case: when the task set is
schedulable with one system and not the other



Local Memory

« External memory accesses are slow (latency)

« Tasks store frequently-used code/data in local
memory

. TWo alternative ways to manage local memory:

. Cache
« Scratchpad Memory (SPM)



Local Memory: Cache

« Cache holds a copy of recently-accessed
code/data from external memory

. Cache is filled as a side-effect of execution
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Local Memory: Cache

« Easy to write tasks that use cache
« Quite difficult to analyse tasks that use cache

. Determining a precise bound on the execution
time:

« Not possible for all types of cache
(pessimism, tool support)

« Not possible for all types of task



Local Memory: SPM

« SPM is used explicitly by the task

« Code/data moved to/from SPM as required
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Local Memory: SPM

. Easy timing analysis
« But, it is harder to write tasks that use SPM
. Tricky memory management issues

« Limited tool support

« Cache vs. SPM may be regarded as a tradeoff
between difficulty of programming and difficulty
of timing analysis



Preemptive Multitasking

. At all times, the highest priority
runnable task is executed by the CPU

7, released
r, completes
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7, preempted

task priority

r,and z, are runnable; z, experiences interference as r, has a higher priority



Multitasking and Cache

. If local memory is cache:

. Cache hardware is not aware of task switches

. Different tasks compete for cache space
and can evict each other's cache blocks
(e.g. due to preemption)

« Schedulability test considers the time cost of
reloading evicted cache blocks



Multitasking and SPM

. If local memory is SPM:

SPM is not aware of task switches

RTOS must manage SPM as part of the task
context

To do this, we apply a "multitasking SPM
reuse scheme” (MSRS) at run-time*

MSRS pages SPM space in/out as required

Schedulability test considers the time cost of
paging

* see [10] and section | in the paper



Part 2

Preemption-related delays
and response time analysis



Response Time Analysis (RTA)

. Worst-Case Response Time, R, — the maximum
interval between release and completion of
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Response Time Analysis (RTA)

. The famous RTA equation determines R..

Rq; — C@ ‘|‘ E T Cj
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Execution of ¢ Interference
’ (from higher
priority tasks)

. Used as a schedulability test: R; < D;



Idealism 1

. Egn ignores context switching time

task priority

FI | rg

I Time

Incorporated by adding CS'™, CS™™ to RTA equation



Idealism 2

. Egn ignores blocking time

Critical section in low priority task
1 High priority task blocked ‘

T

task priority

41

Time

Incorporated by adding B, to RTA equation (blocking due to task z. )



Idealism 3

« Egn ignores preemption related delay

. Distinct from blocking, context switching

. Preemption related delay is additional
execution time imposed upon low-priority
tasks as a result of preemption



Preemption Related Delay

« X is a resource used by both tasks:

task priority

7, uses X

7, uses X, replacing z,

7, uses X, _
: <— Preemption related

!

replacing 7, _
delay incurred
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\ Time
Interference



Non-ideal RTA Equation

R;
R C _I_ Z T J  Execution and
J interference only
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Execution and
interference, context-
switching, blocking, and
preemption-related delay



Cache-Related Preemption Delay

. Preemption-related delay caused by
eviction of cache blocks

. Consider a small cache containing two
blocks A, B

« Cache states represented as:

A 5 Z,
B ?73 Tf

Empty A, Binuseby A, Binuse by
same task different tasks



Cache-Related Preemption Delay

. Example of CRPD:

7, Uses cache
blocks A, B

task priority
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Cache-Related Preemption Delay

. Example of CRPD:

7, Uses cache
blocks A, B 7, uses cache block B

task priority
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Cache A 7 7,
State B . .




Cache-Related Preemption Delay

. Example of CRPD:

7, Uses cache _
blocks A, B Cache miss due
, 7, uses cache block B/ to preemption

task priority

YI 7, uses B again

0
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p
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Time

Cache A 7, 7, r,
state B . - -,




CRPD Modeling

« CRPD may be bounded by considering the
size of set unions and intersections:

« The set of cache blocks used by a task
(evicting cache blocks, ECBs)

« The set of cache blocks reused by a task
(useful cache blocks, UCBs)

. Various investigations in previous work*

* see section Il in the paper



Scratchpad-Related
Preemption Delay (SRPD)

« Preemption-related delay is caused by
“multitasking SPM reuse scheme” (MSRS)

« RTOS pages SPM space in/out at each context
switch as required by each task

. The time cost of paging is SRPD



MSRS

. Multitasking SPM Reuse Scheme
. Example: 7, uses 1 SPM block, 7, uses 2

“Save” - RTOS unloads 7, from 1 “Restore” - RTOS restores
SPM block and loads z, instead 7, usage of SPM

Time

SPM A 7, @ 7
State




Part 3

Experiments and Results



Experimental Implementation

. Working model built on FPGA:

| | |-cache (2KB)
Microblaze < m
CPU Q 5
- E::
B
o l Memory %
L r Controller =
MSRS DMA unit [™ XCL ul

« Has both SPM and Cache (use one or the other)
« DMA unit for fast copies to/from SPM
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Comparison results
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Experimental Method
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Generated task sets

« Tasks are benchmark programs

CRPD-RTA
analysis

Schedulable
with cache?

SRPD-RTA
analysis

Schedulable
with MSRS?

Comparison results

« WCET analysis using aiT software

« System timings ("Save” / "Restore” etc.) from FPGA

implementation

« Tasks partitioned into regions for SPM
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« Upper bound on preemption-related delay
computed by either CRPD or SRPD for each

pair of tasks
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« Response-time analysis using CRPD/SRPD
« Task periods are the same for both systems
« Other parameters (e.g. C, B) are somewhat

implementation-dependent
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« Schedulability test repeated for 100,000 task

sets for each utilization
U = {0.01, 0.02, ..., 0.99}
and for both types of system




Results

100%

===Schedulable with MSRS,

90% 1 according to SRPD-RTA
===Schedulable with cache,
80% 1 according to CRPD-RTA

70% o

60% o
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Proportion of Task Sets found to be Schedulable
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Utilization

100,000 task sets of
size 15 generated

Fig 5, simplified, SRPD-RTA (real) and CRPD only



Results

6% 1

=e==Schedulable with MSRS but not
cache

5% - === Schedulable with cache but not
MSRS

4% o

3% -

2% +

Proportion of Task Sets found to be Schedulable
<
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilization

Fig 4 (modified) based on SRPD (real) results



MSRS and Cache Comparison

« Incomparable

. Some task sets are schedulable with one and
not the other — neither dominates

« When is each preferable?

. A weighted measure of schedulability
allows us to compare across many
different utilisations

. Approximately, the
area under the curve

v
Number
schedulable

utilisation



Effect of Task Set Size
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Contention for local memory

« MSRS is most successful when there is a
great deal of contention for local memory
space
. €.9. many tasks
. €.g. small local memory



Contention for local memory

« Contention for cache blocks occurs
whenever a preempting task evicts a
block being reused by a preempted task

. More likely with more tasks
« More likely with smaller memory
« Contention for SPM blocks always occurs

. Cost is independent of the number of tasks
(Cost depends only on the preempting task)



Observations

« MSRS is similar to cache for schedulability

. Results are (generally) close

. Some task sets are better suited to
cache or MSRS, due to contention

« MSRS may be improved

. We assumed a nailve implementation
. Subsequent work considers improvements



Conclusions

« Compared two approaches for sharing
local memory between tasks in a real-
time system (cache/MSRS)

« MSRS is better than cache for some task
sets — in most cases, it is similar

. Both local memory types are valid
choices for real-time systems



Thank you!
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Proportion of deadline misses

20%
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LSI's question

3 4 5 6 7 8 9 10 11 12 13 14

Highest priority task that missed a deadline

B SPM count
B Cache count

Is the highest priority task more likely to miss a deadline with MSRS? According to our
experiments, this isn't significant. We performed SRPD-RTA and CRPD-RTA for task sets
randomly picked with U in [0.3, 0.8] and n = 15, and if a task set was schedulable with only
one, we found the highest-priority task that missed its deadline and added it to this chart.
— Whether you use cache or MSRS, there is a similar distribution.
— The usual cause for higher priorities is blocking, not MSRS



Effect of Local Memory Size
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approach cannot make use of more than about 2Kb — but the cache
can, which is why it does really well with large local memory
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Simulator Trace (MSRS)
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Simulator trace of an RTOS with four tasks (plus idle) running with
MSRS. Black line = execution. Coloured marks = MSRS operations.



Simulator Trace (Cache)
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Previous slide, replotted for cache. Coloured marks represent cache
misses. Some of these are due to preemption.



