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Context

● This paper is concerned with the ACET and WCET of 
the data accesses within a loop kernel.



  

Context

● This paper is concerned with the ACET and WCET of 
the data accesses within a loop kernel.

LOAD/STORE 
operations

For the purposes of this paper,
all other operations are ignored!
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Context

● This paper is concerned with the ACET and WCET of 
the data accesses within a loop kernel.

Example: ACET
and WCET for data 
accesses with cache. 

(susan_smoothing loop 
kernel)

ACET

WCET*

* strictly: observed WCET...



  

Context

● This paper is concerned with the ACET and WCET of 
the data accesses within a loop kernel.

Example: any loop accessing data 
and not containing other loops.

for(x=-mask_size; x<=mask_size; x++) {
    brightness = *ip++;
    tmp = *dpt++ * *(cp-brightness);
    area += tmp;
    total += tmp * brightness;
} 13
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Which is better?

Data
cache

Data
scratchpad

● Same location 
(physically close to 
the CPU pipeline)

● Same access latency 
(very fast)

● Same purpose (store 
working data set)
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● Ease of use (no drivers or program modification)
● Address transparency (suitable for all data)
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Which is better?

Data
cache

Data
scratchpad

● Ease of use (no drivers or program modification)
● Address transparency (suitable for all data)

...but...
● WCET analysis, if possible at all, comes with 

preconditions on the program and hardware.
● WCET analysis is often imprecise (although always 

safe!)
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Which is better?

Data
cache

Data
scratchpad

● Programs must use the scratchpad explicitly
(relocating data to it: memcpy, etc.)

● No address transparency (causing aliasing problems 
with some data structures).

...but...
● Very predictable behavior means very precise 

timing analysis with fewer preconditions for WCET.

Scratchpad allocation algorithms; 
WCET-aware compilers could 

automate this process



  

Which is better?

Data
cache

Data
scratchpad

● Programs must use the scratchpad explicitly
(relocating data to it: memcpy, etc.)

● No address transparency (causing aliasing problems 
with some data structures).

...but...
● Very predictable behavior means very precise 

timing analysis with fewer preconditions for WCET.

Scratchpad memory management 
unit: solution in previous work.



  

Scratchpads are a good idea

● It's well known that caches are not ideal.
● So why are hard real-time systems still using caches?

(1) Most hardware has caches - and no scratchpad.

(2) Most software (legacy, OS) assumes caches.

(3) Most development tools assume caches.

(4) Most programmers assume caches.
● Because caches are so commonly used, they are well 

worth studying, but we should also consider alternatives!



  

Scratchpads are a good idea

● It's hard to motivate such a change against an 
entrenched technology: the improvement must be 
significant.

● It's easy to make a qualitative case for scratchpads, 
but what good is that?

● Hard, quantitative evidence is needed.
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Quantitative comparison

● Experiment idea: given a loop kernel and an 
otherwise fixed computer architecture, compare 
ACET and WCET with a cache and a scratchpad.

● Recall this
distribution:

cache ACET

cache
WCET
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Quantitative comparison

● Experiment idea: given a loop kernel and an 
otherwise fixed computer architecture, compare 
ACET and WCET with a cache and a scratchpad.

● Add
scratchpad
ACET/WCET

cache ACET

cache
WCET

scratchpad
ACET&WCET
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Quantitative comparison

● Cache ACET, scratchpad ACET & WCET - easily found.
● Cache WCET - not easy to find!

● WCET analysis
overestimates
cache WCET.

● Measurement
underestimates
cache WCET.

cache ACET

cache
WCET?

scratchpad
ACET&WCET
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Quantitative comparison

● A fair comparison is very difficult!
● Therefore, we bias the comparison against 

scratchpads!

● Compare WCET
(scratchpad)
with ACET
(ideal cache)

cache ACETscratchpad
WCET



  

Experiment design

● Same CPU model, external memory, data bus.
● Same amount of on-chip memory; but configured as 

either idealised cache or realistic scratchpad.
● Same loop kernels executed on both.
● WCET computed for scratchpad (including transfer 

time for loading/unloading scratchpad).
● ACET measured for cache (including cache misses).



  

Input data: loop kernels

● Extracted from benchmark software:
adpcm, ammp, art, bzip2, crc32, djpeg, fft, gap, gsm, ispell, 
patricia, susan...

● By profiling, we identified hotspots with a large 
amount of memory accesses to heap and global data.

● These loops were then translated into models that 
reproduce similar access patterns.



  

Illustration

Memory
access

hotspots

Measure ACET
with cache

Memory
access
model

Benchmark
programs

profiling

m
odeling

Compute WCET
with scratchpad

analy sis
sim

u latio n



  

Model example

● From susan benchmark:
for(x=-mask_size; x<=mask_size; x++) {
    brightness = *ip++;
    tmp = *dpt++ * *(cp-brightness);
    area += tmp;
    total += tmp * brightness;
}

Three pointers accessed on each iteration:

– ip: accessed once per iteration, sequentially with step 1.

– dpt: accessed once per iteration, sequentially with step 1.

– cp: accessed once per iteration, randomly, range 286 bytes.



  

Model example

● From susan benchmark:
for(x=-mask_size; x<=mask_size; x++) {
    brightness = *ip++;
    tmp = *dpt++ * *(cp-brightness);
    area += tmp;
    total += tmp * brightness;
}

● Memory access model:

for(i=0; i<N; i++) {
LOAD(i + ip); LOAD(i + dpt);
LOAD(RANDOM(286) + cp);

}
    



  

● Models were generated for 36 loop kernels.
● ACET of memory access operations with cache was 

estimated by measurement:

– Generate random pointer values as inputs.
– Assume fully associative write-back cache with 

64-byte lines and true LRU replacement. 
Write-back time counts towards ET.

● WCET of memory access with scratchpad was 
determined by analysis.

– Objects are allocated to scratchpad to 
minimise WCET; loaded before/after the loop 
kernel runs, load time counts toward WCET.



  

Initial comparison
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What causes the shortfall?

● Objects that can't be completely stored in scratchpad 
because they're too large.

● Example: ip is too
large for scratchpad if

2 x mask_size > scratchpad_size

● What can be done about these?

for(x=-mask_size; x<=mask_size; x++) {
    brightness = *ip++;
    tmp = *dpt++ * *(cp-brightness);
    area += tmp;
    total += tmp * brightness; }



  

Loop tiling

● For iterative accesses, update scratchpad contents 
during the loop by synthesizing a second outer loop:

for(x=-mask_size; x<=mask_size; x++) {
    brightness = *ip++;
    tmp = *dpt++ * *(cp-brightness);
    area += tmp;
    total += tmp * brightness;
}

for(x=-mask_size; x<=mask_size; ) {
load_scratchpad(ip, M);

for(i=M; (i > 0) && (x <= mask_size); i--, x++) {
    brightness = *ip++;
    tmp = *dpt++ * *(cp-brightness);
    area += tmp;
    total += tmp * brightness;

}
unload_scratchpad(ip, M);

}

Loop tiling for ip



  

With loop tiling
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A great improvement

● But there's still a discrepancy.

● This is because the cache can discard data that hasn't 
changed; but our scratchpad model insists it is always 
written back to avoid aliasing issues.

● Solution: add explicit hardware support for discarding 
read-only data in scratchpad to the SMMU.



  

With loop tiling & discarding
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Back to the example
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Success..

● WCET with scratchpad is now within 5% of the
cache ACET in 34 of 36 cases.

● WCET with scratchpad is actually smaller than
the cache ACET in 16 cases!

– Random accesses within large areas of memory 
don't disrupt the scratchpad state.

● The only significant discrepancy is loop kernel 18.



  

Loop kernel 18

● Random access to array of size 20.5kb.
● Up to 78% chance that any particular byte will be 

found within a 16kb cache.
● However, 0% chance that any byte will be found in 

scratchpad, as the entire array cannot be stored.
● Hence, cache ACET is less than scratchpad WCET.



  

Conclusion

● A comparison of a highly idealised data cache to a 
realistic scratchpad using loop kernels.

● Comparison is biased strongly in favour of caches by 
comparing cache ACET to scratchpad WCET, no 
consideration of cache WCET.

● Simple optimisations bring the scratchpad WCET close 
to the cache ACET, and make it better in some cases!

Strong evidence that a move away from caches will 
be worthwhile. “Time-predictable isn't slow”.



  

Thankyou

The Real-time Systems Group
at the University of York.
http://www.cs.york.ac.uk/rts/



  

Additional material



  

Lockable Data Cache Restriction

● In general, can't load & lock N+1 objects together in 
an N-way associative cache

● Major restriction on the working set!

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

tag line

apples

bananas

apples = 0110 001 0000;

bananas = 0000 001 0000;

apples

?



  

Scratchpad Memory Restriction

● If a program moves an object between external 
memory and scratchpad, its address changes.

Data

Copy of Dataint * a

int * b

Data
int * a

int * b

before after

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

a[1]=2;
b[1]=3;
(a[1] == 3) is FALSE



  

Address Transparency Example

● If a program moves an object between external 
memory and scratchpad with SMMU, its address does 
not change.

Copy of Data

Data

int * a

int * b

before after

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

SMMU
remap

Data

int * a

int * b

SMMU
remap
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