

Investigating average versus
worst-case timing behavior of

data caches and data scratchpads

Jack Whitham and Neil Audsley
Real-time Systems Group, University of York

jack@cs.york.ac.uk

Context

● This paper is concerned with the ACET and WCET of
the data accesses within a loop kernel.

Context

● This paper is concerned with the ACET and WCET of
the data accesses within a loop kernel.

LOAD/STORE
operations

For the purposes of this paper,
all other operations are ignored!

13
5.

0

13
5.

4

13
5.

8

13
6.

2

13
6.

6

13
7.

0

13
7.

4

13
7.

7

13
8.

1

13
8.

5

13
8.

9

13
9.

3

13
9.

7

14
0.

1

14
0.

5

14
0.

8

14
1.

2

14
1.

6

14
2.

0

14
2.

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache

F
re

q
u

e
n

cy

Context

● This paper is concerned with the ACET and WCET of
the data accesses within a loop kernel.

Example: ACET
and WCET for data
accesses with cache.

(susan_smoothing loop
kernel)

ACET

WCET*

* strictly: observed WCET...

Context

● This paper is concerned with the ACET and WCET of
the data accesses within a loop kernel.

Example: any loop accessing data
and not containing other loops.

for(x=-mask_size; x<=mask_size; x++) {
 brightness = *ip++;
 tmp = *dpt++ * *(cp-brightness);
 area += tmp;
 total += tmp * brightness;
} 13

5.
0

13
5.

4

13
5.

8

13
6.

2

13
6.

6

13
7.

0

13
7

.4

13
7.

7

13
8.

1

13
8

.5

13
8.

9

13
9.

3

13
9

.7

14
0.

1

14
0.

5

14
0

.8

14
1.

2

14
1.

6

14
2

.0

14
2.

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache

Fr
e

q
u

e
n

cy

generated

Which is better?

Data
cache

Data
scratchpad

● Same location
(physically close to
the CPU pipeline)

● Same access latency
(very fast)

● Same purpose (store
working data set)

Which is better?

Data
cache

Data
scratchpad

● Ease of use (no drivers or program modification)
● Address transparency (suitable for all data)

Which is better?

Data
cache

Data
scratchpad

● Ease of use (no drivers or program modification)
● Address transparency (suitable for all data)

...but...
● WCET analysis, if possible at all, comes with

preconditions on the program and hardware.

Which is better?

Data
cache

Data
scratchpad

● Ease of use (no drivers or program modification)
● Address transparency (suitable for all data)

...but...
● WCET analysis, if possible at all, comes with

preconditions on the program and hardware.
● WCET analysis is often imprecise (although always

safe!)

Which is better?

Data
cache

Data
scratchpad

● Programs must use the scratchpad explicitly
(relocating data to it: memcpy, etc.)

● No address transparency (causing aliasing problems
with some data structures)

Which is better?

Data
cache

Data
scratchpad

● Programs must use the scratchpad explicitly
(relocating data to it: memcpy, etc.)

● No address transparency (causing aliasing problems
with some data structures)

...but...
● Very predictable behavior means very precise

timing analysis with fewer preconditions for WCET.

Which is better?

Data
cache

Data
scratchpad

● Programs must use the scratchpad explicitly
(relocating data to it: memcpy, etc.)

● No address transparency (causing aliasing problems
with some data structures).

...but...
● Very predictable behavior means very precise

timing analysis with fewer preconditions for WCET.

Scratchpad allocation algorithms;
WCET-aware compilers could

automate this process

Which is better?

Data
cache

Data
scratchpad

● Programs must use the scratchpad explicitly
(relocating data to it: memcpy, etc.)

● No address transparency (causing aliasing problems
with some data structures).

...but...
● Very predictable behavior means very precise

timing analysis with fewer preconditions for WCET.

Scratchpad memory management
unit: solution in previous work.

Scratchpads are a good idea

● It's well known that caches are not ideal.
● So why are hard real-time systems still using caches?

(1) Most hardware has caches - and no scratchpad.

(2) Most software (legacy, OS) assumes caches.

(3) Most development tools assume caches.

(4) Most programmers assume caches.
● Because caches are so commonly used, they are well

worth studying, but we should also consider alternatives!

Scratchpads are a good idea

● It's hard to motivate such a change against an
entrenched technology: the improvement must be
significant.

● It's easy to make a qualitative case for scratchpads,
but what good is that?

● Hard, quantitative evidence is needed.

13
5.

0

13
5.

4

13
5.

8

13
6.

2

13
6.

6

13
7.

0

13
7.

4

13
7.

7

13
8.

1

13
8.

5

13
8.

9

13
9.

3

13
9.

7

14
0.

1

14
0.

5

14
0.

8

14
1.

2

14
1.

6

14
2.

0

14
2.

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache

F
re

q
u

e
n

cy

Quantitative comparison

● Experiment idea: given a loop kernel and an
otherwise fixed computer architecture, compare
ACET and WCET with a cache and a scratchpad.

● Recall this
distribution:

cache ACET

cache
WCET

13
5.

0

13
5.

4

13
5.

8

13
6.

2

13
6.

6

13
7.

0

13
7.

4

13
7.

7

13
8.

1

13
8.

5

13
8.

9

13
9.

3

13
9.

7

14
0.

1

14
0.

5

14
0.

8

14
1.

2

14
1.

6

14
2.

0

14
2.

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache

F
re

q
u

e
n

cy

Quantitative comparison

● Experiment idea: given a loop kernel and an
otherwise fixed computer architecture, compare
ACET and WCET with a cache and a scratchpad.

● Add
scratchpad
ACET/WCET

cache ACET

cache
WCET

scratchpad
ACET&WCET

13
5.

0

13
5.

4

13
5.

8

13
6.

2

13
6.

6

13
7.

0

13
7.

4

13
7.

7

13
8.

1

13
8.

5

13
8.

9

13
9.

3

13
9.

7

14
0.

1

14
0.

5

14
0.

8

14
1.

2

14
1.

6

14
2.

0

14
2.

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache

F
re

q
u

e
n

cy

Quantitative comparison

● Cache ACET, scratchpad ACET & WCET - easily found.
● Cache WCET - not easy to find!

● WCET analysis
overestimates
cache WCET.

● Measurement
underestimates
cache WCET.

cache ACET

cache
WCET?

scratchpad
ACET&WCET

13
5.

0

13
5.

4

13
5.

8

13
6.

2

13
6.

6

13
7.

0

13
7.

4

13
7.

7

13
8.

1

13
8.

5

13
8.

9

13
9.

3

13
9.

7

14
0.

1

14
0.

5

14
0.

8

14
1.

2

14
1.

6

14
2.

0

14
2.

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache

F
re

q
u

e
n

cy

Quantitative comparison

● A fair comparison is very difficult!
● Therefore, we bias the comparison against

scratchpads!

● Compare WCET
(scratchpad)
with ACET
(ideal cache)

cache ACETscratchpad
WCET

Experiment design

● Same CPU model, external memory, data bus.
● Same amount of on-chip memory; but configured as

either idealised cache or realistic scratchpad.
● Same loop kernels executed on both.
● WCET computed for scratchpad (including transfer

time for loading/unloading scratchpad).
● ACET measured for cache (including cache misses).

Input data: loop kernels

● Extracted from benchmark software:
adpcm, ammp, art, bzip2, crc32, djpeg, fft, gap, gsm, ispell,
patricia, susan...

● By profiling, we identified hotspots with a large
amount of memory accesses to heap and global data.

● These loops were then translated into models that
reproduce similar access patterns.

Illustration

Memory
access

hotspots

Measure ACET
with cache

Memory
access
model

Benchmark
programs

profiling

m
odeling

Compute WCET
with scratchpad

analy sis
sim

u latio n

Model example

● From susan benchmark:
for(x=-mask_size; x<=mask_size; x++) {
 brightness = *ip++;
 tmp = *dpt++ * *(cp-brightness);
 area += tmp;
 total += tmp * brightness;
}

Three pointers accessed on each iteration:

– ip: accessed once per iteration, sequentially with step 1.

– dpt: accessed once per iteration, sequentially with step 1.

– cp: accessed once per iteration, randomly, range 286 bytes.

Model example

● From susan benchmark:
for(x=-mask_size; x<=mask_size; x++) {
 brightness = *ip++;
 tmp = *dpt++ * *(cp-brightness);
 area += tmp;
 total += tmp * brightness;
}

● Memory access model:

for(i=0; i<N; i++) {
LOAD(i + ip); LOAD(i + dpt);
LOAD(RANDOM(286) + cp);

}

● Models were generated for 36 loop kernels.
● ACET of memory access operations with cache was

estimated by measurement:

– Generate random pointer values as inputs.
– Assume fully associative write-back cache with

64-byte lines and true LRU replacement.
Write-back time counts towards ET.

● WCET of memory access with scratchpad was
determined by analysis.

– Objects are allocated to scratchpad to
minimise WCET; loaded before/after the loop
kernel runs, load time counts toward WCET.

Initial comparison

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scratchpad WCET / Cache ACET (data accesses)

L
o

o
p

 K
e

rn
e

l

Cache ACET / Scratchpad WCET (data accesses)

Initial comparison

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scratchpad WCET / Cache ACET (data accesses)

L
o

o
p

 K
e

rn
e

l

i

Cache ACET / Scratchpad WCET (data accesses)

What causes the shortfall?

● Objects that can't be completely stored in scratchpad
because they're too large.

● Example: ip is too
large for scratchpad if

2 x mask_size > scratchpad_size

● What can be done about these?

for(x=-mask_size; x<=mask_size; x++) {
 brightness = *ip++;
 tmp = *dpt++ * *(cp-brightness);
 area += tmp;
 total += tmp * brightness; }

Loop tiling

● For iterative accesses, update scratchpad contents
during the loop by synthesizing a second outer loop:

for(x=-mask_size; x<=mask_size; x++) {
 brightness = *ip++;
 tmp = *dpt++ * *(cp-brightness);
 area += tmp;
 total += tmp * brightness;
}

for(x=-mask_size; x<=mask_size;) {
load_scratchpad(ip, M);

for(i=M; (i > 0) && (x <= mask_size); i--, x++) {
 brightness = *ip++;
 tmp = *dpt++ * *(cp-brightness);
 area += tmp;
 total += tmp * brightness;

}
unload_scratchpad(ip, M);

}

Loop tiling for ip

With loop tiling

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Scratchpad WCET / Cache ACET (data accesses)

L
o

o
p

 K
e

rn
e

l

i

Cache ACET / Scratchpad WCET (data accesses)

A great improvement

● But there's still a discrepancy.

● This is because the cache can discard data that hasn't
changed; but our scratchpad model insists it is always
written back to avoid aliasing issues.

● Solution: add explicit hardware support for discarding
read-only data in scratchpad to the SMMU.

With loop tiling & discarding

36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Scratchpad WCET / Cache ACET (data accesses)

L
o

o
p

 K
e

rn
e

l

i

Cache ACET / Scratchpad WCET (data accesses)

Back to the example

10
8.

9

13
5.

0
13

5.
4

13
5.

8
13

6.
2

13
6.

6
13

7.
0

13
7.

4
13

7.
7

13
8.

1
13

8.
5

13
8.

9
13

9.
3

13
9.

7
14

0.
1

14
0.

5
14

0.
8

14
1.

2
14

1.
6

14
2.

0
14

2.
4

15
7.

9

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Total execution time of LOAD/STORE with cache & scratchpad

F
re

q
u

e
n

cy

cache ACET
scratchpad
WCET

Success..

● WCET with scratchpad is now within 5% of the
cache ACET in 34 of 36 cases.

● WCET with scratchpad is actually smaller than
the cache ACET in 16 cases!

– Random accesses within large areas of memory
don't disrupt the scratchpad state.

● The only significant discrepancy is loop kernel 18.

Loop kernel 18

● Random access to array of size 20.5kb.
● Up to 78% chance that any particular byte will be

found within a 16kb cache.
● However, 0% chance that any byte will be found in

scratchpad, as the entire array cannot be stored.
● Hence, cache ACET is less than scratchpad WCET.

Conclusion

● A comparison of a highly idealised data cache to a
realistic scratchpad using loop kernels.

● Comparison is biased strongly in favour of caches by
comparing cache ACET to scratchpad WCET, no
consideration of cache WCET.

● Simple optimisations bring the scratchpad WCET close
to the cache ACET, and make it better in some cases!

Strong evidence that a move away from caches will
be worthwhile. “Time-predictable isn't slow”.

Thankyou

The Real-time Systems Group
at the University of York.
http://www.cs.york.ac.uk/rts/

Additional material

Lockable Data Cache Restriction

● In general, can't load & lock N+1 objects together in
an N-way associative cache

● Major restriction on the working set!

000xxxx

001xxxx

010xxxx

011xxxx

100xxxx

101xxxx

110xxxx

111xxxx

tag line

apples

bananas

apples = 0110 001 0000;

bananas = 0000 001 0000;

apples

?

Scratchpad Memory Restriction

● If a program moves an object between external
memory and scratchpad, its address changes.

Data

Copy of Dataint * a

int * b

Data
int * a

int * b

before after

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

a[1]=2;
b[1]=3;
(a[1] == 3) is FALSE

Address Transparency Example

● If a program moves an object between external
memory and scratchpad with SMMU, its address does
not change.

Copy of Data

Data

int * a

int * b

before after

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

a[1]=2;
b[1]=3;
(a[1] == 3) is TRUE

SMMU
remap

Data

int * a

int * b

SMMU
remap

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

