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Abstract
WCET analysis models for superscalar out-of-order CPUs generally need to be pessimistic in order to
account for a wide range of possible dynamic behavior. CPU hardware modifications could be used
to constrain operations to known execution paths called traces, permitting exploitation of instruction
level parallelism with guaranteed timing. Previous implementations of traces have used microcode to
constrain operations, but other possibilities exist. A new implementation strategy (virtual traces) is
introduced here.

In this paper the benefits and costs of traces are discussed. Advantages of traces include a reduction
in pessimism in WCET analysis, with the need to accurately model CPU internals removed. Dis-
advantages of traces include a reduction of peak throughput of the CPU, a need for deterministic
memory and a potential increase in the complexity of WCET models.

1. Introduction

Worst-case execution time (WCET) analysis determines the maximum execution time for a program
on a particular CPU [17]. On some CPUs, the execution of each instruction within the program is
independent of execution history and data inputs, making the program easy to model for WCET anal-
ysis. Methods like the implicit path enumeration technique (IPET) [10] can find the exact WCET in
these simple cases because the execution time of each section of code can be considered indepen-
dently of all the others [18]. If the execution times are not constant, then it is still possible to use an
upper bound on the execution time of blocks of code, yielding a pessimistic (i.e. inexact but safe)
WCET estimate. In IPET, the program is modeled as a flow network, and integer linear programming
is used to determine the execution path with the maximal execution time.

Out-of-order CPUs are difficult to analyze due to their complexity, but accurate analysis is necessary
because a safe upper bound is required [8]. Advanced CPUs provide higher instruction throughput
by using very long pipelines, executing operations in parallel, and executing operations speculatively
(that is, before the branch that led to them): all of these features must be modeled. The rate of code
execution is dependent on history (via branch prediction [5], caches [13] and pipeline interaction
effects [11]) and dependent on data values (because of memory disambiguation [12] and variable
duration instructions). Consequently, the upper bound may be much greater than the typical case. In
some cases, a slower and simpler CPU might have a lower WCET as well as facilitating analysis.

Previous work suggested the use of microcoded traces as an abstraction of CPU behavior for WCET
analysis [23, 22]. Traces support speculative and parallel execution within an IPET-based WCET
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Figure 1. Trace formation in [23]: (a) basic blocks on the WCEP are selected for inclusion in a trace, then (b) their
instructions are rescheduled into blocks of microcode, reducing the execution time of the path.

analysis model, potentially without introducing pessimism. Each trace is a sequence of basic blocks:
a subpath of a program. Trace allocation algorithms try to match traces to subpaths of the worst-
case execution path (WCEP) which maximizes a program’s execution time. The WCEP might be
changed by each trace allocation, so it is (1) initially estimated by assuming fixed execution times for
code and performing WCET analysis, and then (2) refined by repeating WCET analysis after N trace
allocations. When a path has been selected for trace formation (Figure 1(a)), a scheduler converts the
basic blocks into functionally equivalent microcode (Figure 1(b)). The microcode is explicitly parallel
and uses speculation to execute the operations along the main path [BB1, BB3, BB6] as quickly as
possible. Hence, the local WCET of that path is reduced, and the WCET of the whole program may
also be reduced if the main path is chosen correctly. The cost of adding the trace is that other paths
may have increased execution time (e.g. [BB1, BB2]), so allocation algorithms must evaluate the
overall WCET reduction benefits of each choice.

This paper details the motivation for traces using previous work (section 2) then describes the tim-
ing model that they enable (section 3). Then a new implementation strategy is discussed, avoiding
microcode (section 4). Section 5 concludes.

2. Why use Traces?

Out-of-order CPUs exploit instruction level parallelism using a complex heuristic mechanism that
attempts to run operations as soon as possible. The incoming instructions specify code for a sequential
machine: an out-of-order CPU preserves in-order semantics while executing code in parallel where
possible. The execution rate is limited by the data dependences in the code, the accuracy of predictions
about future control flow, the resource limits of the CPU and the memory bandwidth. The first out-of-
order pipelines were implemented in the 1960s using two different mechanisms to track dependences:
a scoreboard (in the CDC 6600 [2]) and Tomasulo’s algorithm (in the System 360 CPU [20]). Since
then, the designs have been greatly refined [19].

As part of real-time systems design, it is necessary to compute the WCET of various programs running
on the CPU. If the CPU is an out-of-order CPU, then building an accurate model will be costly [8].
The costs can be reduced by improving CPU predictability, e.g. by using locked caches [6] or scratch-
pads [15] to replace unpredictable memory systems, and replacing dynamic branch predictions with
static predictions [4]. But dynamic behavior still exists in the operation scheduler which is affected
by history and data dependences. Accounting for all possible behaviors turns WCET computations
into pessimistic estimates, so the CPU resources are under-utilized, particularly if a suboptimal con-



dition such as a domino effect [11] or timing anomaly [21] is possible. Such conditions are handled
by incorporating pessimism into the CPU model [9] or by adding pipeline synchronizing instructions
to the code to prevent the effect [11]: both approaches increase the WCET estimate.

To avoid CPU modeling, the probabilistic WCET approach has been proposed, where a statistical
model of the execution time of a program is built automatically using measurements [3], but this
approach is not suitable for all applications because the upper bound cannot be guaranteed. Alter-
natively, modeling costs can be reduced by constraining a complex CPU to intermediate deadlines
obtained using a simpler CPU model. In VISA [1], programs execute on an out-of-order CPU that
is downgraded to predictable in-order operation if an intermediate deadline is not reached. Unfortu-
nately, this limits the WCET to that of an in-order CPU. Finally, modeling costs can be eliminated
entirely by single path programming [16] where branches are replaced by predicated execution, since
single path programs have constant execution times. Here, the WCET is limited by predication ef-
fects, since instructions in both the if and else cases of a conditional statement pass through the CPU.

The trace approach is related to all of the above. As in [3], it is observed that superscalar out-of-
order CPUs are (1) difficult to model, and (2) models are pessimistic in any case, so it is best to
avoid making a model of the CPU. Measurements obtained for probabilistic WCET allow statistically
valid observations to be made regarding the WCET, but traces require a finite number of measure-
ments which always cover all possible behaviors while probabilistic WCET requires a potentially
unbounded number of measurements for a high degree of confidence in the WCET computation. As
in [16], it is observed that removing control flow permits direct measurement. Traces remove the
need to model internal control flow within the CPU (leaving program control flow) while single path
programming removes both types of control flow. Finally, as in [1], an out-of-order CPU is modi-
fied to provide guarantees about timing, but the trace model accommodates speculative out-of-order
execution instead of enforcing an upper timing bound.

3. What is a Trace?

In this paper, a trace is (1) executable code and (2) a timing model to represent the properties of that
code. As executable code, a trace replaces sequential machine code in one or more basic blocks,
forming part of a path through the program. It is functionally equivalent to that code, but executes in
less time, at least along its main path. This is the same definition that is widely used in previous work,
e.g. [7]. Traces have been previously implemented using microcode [23], but this is not necessary
(section 4). An entire program could be composed of traces (as in this paper), or traces might be
combined with predictable in-order execution (as in [23]). As a timing model, a trace is a subgraph
of a timing graph (T-graph), as proposed in [18] for WCET analysis using IPET. The model is:

1. A trace always begins execution with the internal parts of the CPU in a well-defined state. The
next instruction to be executed is the beginning of a basic block e, known as the entrance.

2. A trace has 1 ≤ n ≤ L + 1 exits: when these are reached, execution may move to another trace.
Figure 2(a) shows a trace with three exits.

3. A trace requires a precisely known number of clock cycles to reach each one of the n exits from
the entrance. The path to exit i from entrance e is denoted as Pe,i for WCET analysis purposes: Pe,i

is a sequence of basic blocks. The time taken is t(Pe,i).
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Figure 2. (a): Three paths through a trace beginning at basic block e. The paths lead to basic blocks a, x and c.
(b): T-graph containing a, x and c. (c): T-graph incorporating the trace. The execution cost of each basic block is
shown. The cost of the paths e→ a and e→ c increases slightly, but the cost of the main path e→ x is decreased.

4. A trace contains up to L conditional branches along the main path Pe,0 (e → x in Figure 2(a)).
Every other path Pe,j (j 6= 0) also follows this path until conditional branch j is reached. Then, Pe,j

leads to an exit while Pe,0 continues.

5. An exit is taken when a branch condition is evaluated as True or the main path’s end is reached.

6. After any exit, a transformation has been applied to the program state (i.e. general-purpose regis-
ters, program counter and RAM). The transformation is guaranteed to be identical to the transforma-
tion that would have been applied if the original machine code had been executed.

The purpose of the trace is to reduce the execution cost of the main path Pe,0 by permitting speculation
and out-of-order execution along this path. The cost of other paths may be reduced or increased.
Because each Pe,i is constant, it is possible to use exact IPET analysis (without pessimism): every
trace is composed of “basic blocks” in microcode, each with constant execution times, permitting
IPET to determine exact results [18]. The T-graph shown in Figure 2(b) is transformed to the T-graph
in Figure 2(c) by the trace shown in Figure 2(a). More complex transformations are required when a
trace represents an unrolled loop, because a basic block may be executed in multiple contexts [22].

4. Constraining CPU Behavior

The dynamic operation scheduler’s behavior can be predicted precisely if hardware exists to (1) reset
the scheduler to a known state, and (2) constrain all of the external inputs that could affect it. This
can be used to implement virtual traces, which share the trace timing model (section 3) but use the
dynamic operation scheduler in place of microcode. Figure 3 shows a diagram of a dynamic scheduler
with external inputs, showing every source of noise that could affect execution. To fit the timing model
in section 3, virtual traces must specify a main path through the program, and the execution time of
that path (and all exit paths) must be an exact number of clock cycles. To implement virtual traces,
dynamic scheduler inputs are restricted as follows:

• Cache stalls can be eliminated by cache locking [6] or by using scratchpad memory [15]. Like
caches, scratchpads are on-chip memories that can allow programs to avoid slow and energy-intensive
accesses to off-chip memory. But unlike caches, scratchpads are not automatically updated during
program execution: they must be explicitly loaded by a program [14]. This is not as convenient as a
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Figure 3. Sources of noise that could affect the operation of a dynamic operation scheduler.

cache but it is easy to predict the latency of a memory access. No cache modeling [13] is required, so
the complexity of analysis is reduced.

• Memory dependence mispredictions [12] can be eliminated by enforcing a safe ordering on memory
operations: load operations cannot be reordered across store operations, and store operations cannot
be reordered at all. Load/store forwarding is disabled as it is data dependent.

• Variable duration instructions can be eliminated by forcing a fixed (upper bound) duration.

• Exceptions are discarded; many programs do not use them. (They could be modeled as conditional
branches if necessary.)

Other inputs shown in Figure 3 are accommodated:

• Branch predictions fit into the trace model; the dynamic branch predictor is replaced by a rep-
resentation of the trace. It (1) generates predictions so that instruction fetching follows the main
path through the trace, and (2) considers the detection of a misprediction as an exit from the trace.
However, the hardware must ensure that branch operations are executed in program order, since that
prevents n > 1 misprediction events being active at the same time, leading to up to 2n − 1 possible
exit conditions instead of 1. This can be done through the instruction dependence mechanism.

• Instructions also fit into the trace model: they are fetched along the main path, and when the end
of the main path is reached, fetching is stalled. This prevents further instructions introducing noise.

The previous state of the scheduler may also have an effect on the schedule. This could be handled
by (1) adding a reset function or (2) stalling the incoming instructions until the pipeline is drained.

4.1. Benefits

The CPU modifications guarantee that the operation scheduler is not affected by execution history
(except within each trace) and that operation is not data dependent. This allows speculation and out-
of-order execution along the main path. The speculation that occurs is always predictable. Inputs
always arrive at known intervals, so the scheduler always does the same thing: following one of the
paths Pe,i through each trace.

The changes affect the load/store unit (removal of load/store forwarding) and the execution unit (re-
moval of variable duration instructions). There are new dependences for branches and memory op-
erations. Finally, a device is added to manage the execution of virtual traces (Figure 4). This is a
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Figure 4. Virtual trace controller state machine: waits for the pipeline to empty before beginning the next trace.

simple state machine that enforces a strict order on trace execution, ensuring that each trace has fully
completed before the next one begins.

This arrangement allows each t(Pe,i) value to be measured using the CPU, which is treated as a black
box. Hence, CPU modeling costs are very low. Given these timing values, programs composed of
traces can be represented within an IPET model as in [23]. The only limit on the number of traces
is the storage space required: for virtual traces, the stored data comprises branch predictions and
the length, so space requirements are minimal. As in VISA [1], the CPU modifications could be
turned on and off dynamically, allowing real-time tasks to be mixed with non-real-time tasks on the
same platform without any interference between the two. The approach could also be combined
with single path programming [16] by using predication to remove conditional branches in frequently
executed code: this could be beneficial since fewer exits would exist in each trace, and consequently
opportunities for parallelism would be increased.

4.2. Costs

Previous work suggests three potential problems with traces, independent of the implementation:

• Reduction in Peak Throughput - this is almost certain to be lower than the peak throughput of a
similarly-configured CPU optimized for ACET reduction. For example, the pipeline is emptied at
every exit from a trace. Typical CPU designs would attempt to do useful work during this time, such
as executing the next piece of code, but that could interfere with subsequent timing. Enforcing an
order on memory operations will also reduce throughput [12].

• Deterministic Memory Assumption - every memory access must respond in a known time period.
Cache stalls disturb the operation of the pipeline, perhaps introducing timing anomalies [21]. In
an environment with multiple CPU cores, this could be particularly problematic as bus contention
would also be a factor. Scratchpads could be used as a replacement for caches, but this increases the
engineering difficulty of building the program [15, 14].

• Analytical Complexity - the IPET model becomes more complex when traces are introduced, be-
cause (1) there are more basic blocks, and (2) the new trace basic blocks are linked to the constraints
on the original basic blocks [23]. Although the total number of integer linear program constraints is
only increased by O(n) for a program with n basic blocks, the difficulty of solving the IPET problem
could still be vastly increased due to the NP-hard nature of integer linear programming problems.



5. Conclusion

This paper has explained the motivation for traces, outlined a WCET analysis model for them, and
described a way to implement virtual traces by modifying a superscalar out-of-order CPU. Likely
benefits and costs have been discussed.

Future work will use a simulated implementation of virtual traces to determine the exact costs of the
restrictions on throughput. It would be interesting to compare these to the pessimistic assumptions
that would otherwise need to be made in order to determine the WCET. Intuitively, the pessimism
inherent in traces is likely to be lower than the pessimism from analysis, and consequently traces
could provide higher guaranteed performance. Low CPU modeling costs are another benefit. Despite
this, the disadvantages of traces (section 4.2) may be prohibitive. Further research will provide more
information about the costs and benefits of the ideas.
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