
A Modular Soft Processor Core in VHDL

Jack Whitham

2002-2003

This is a Third Year project submitted for the degree of MEng in the Department of Computer Science
at the University of York. The project will attempt to demonstrate that a modular soft processor core
can be designed and implemented on an FPGA, and that the core can be optimised to run a particular

embedded application using a minimal amount of FPGA space.

The word count of this project (as counted by the Unix wc command after detex was run on the LaTeX
source) is 33647 words. This includes all text in the main report and Appendices A, B and C. Excluding source
code, the project is 70 pages in length.

i

Contents

I. Introduction 1

1. Background and Literature 1
1.1. Soft Processor Cores . 1
1.2. A Field Programmable Gate Array . 1
1.3. VHSIC Hardware Definition Language (VHDL) . 2
1.4. The Motorola 68020 . 2

II. High-level Project Decisions 3

2. Should the design be based on an existing one? 3

3. Which processor should the soft core be based upon? 3

4. Which processor should be chosen? 3

5. Restating the aims of the project in terms of the chosen processor 4

III. Modular Processor Design Decisions 4

6. Processor Design 4
6.1. Alternatives to a complete processor implementation . 4
6.2. A real processor . 5
6.3. Instruction Decoder and Control Logic . 5
6.4. Arithmetic and Logic Unit (ALU) . 7
6.5. Register File . 7
6.6. Links between Components . 8

7. The framework for a minimal processor 8
7.1. How this allows an application to be executed . 9
7.2. More complex features of the 68020 . 9

8. Compiling and testing 68020 programs 11
8.1. GCC Compilation Issues . 11
8.2. The Emulator . 12

9. What features can be modularised? 13
9.1. Modularisation of Instruction Support . 14
9.2. Modularisation of Registers . 14
9.3. Modularisation of ALU operations . 14
9.4. Modularisation of addressing modes . 14
9.5. Optimisation of the Addressing Width . 15
9.6. Writing the generator . 15

10.Designing processor components in VHDL 15
10.1. Control Logic . 16
10.2. Instruction Decoder . 19
10.3. Arithmetic and Logic Unit (ALU) . 21

ii

10.4. Register File . 21
10.5. Memory implementation . 22
10.6. Debugging Hardware . 23
10.7. Output Device . 24

11.The Generator 25
11.1. How should VHDL files be generated? . 25
11.2. Generator Directives . 26
11.3. Design of a 68020 program scanner . 26

12.Designing state machine sequences for instruction execution 27

IV. Implementation Phase 27

13.Implementing the fixed parts of the processor 27
13.1. The Control Logic . 28
13.2. The ALU . 29
13.3. The Register File . 32
13.4. The Memory Subsystem and Output Device . 32
13.5. Debugging Hardware Implementation . 34

14.Implementing control line sequences for 68020 instruction execution 36
14.1. Beginning to implement the 68020 instructions . 37
14.2. Defining the high level register transfers that are required . 37
14.3. Thinking at a lower level . 39
14.4. Implementing the Register Transfers in VHDL . 47
14.5. Implementing the state machine sequences for each instruction 49

15.Implementing the generator 50
15.1. The state machine generator . 50
15.2. The instruction decoder generator . 52
15.3. The ALU and Effective Address optimisers . 57
15.4. The program scanner . 59

V. Evaluation and Conclusion 60

16.Evaluation 60
16.1. Does the State Machine Compiler work? . 60
16.2. Does the processor work? . 61
16.3. How much FPGA space does the processor take up? . 62
16.4. How does it compare to other soft processor cores? . 64
16.5. How extensible is the processor? . 65
16.6. Summary of the Evaluation . 65

17.Conclusion 65

VI. Appendices 66

A. Bibliography 66

iii

B. Building-Block Hardware Components that appear in Diagrams 67
B.1. Multiplexers . 67
B.2. Links between Components . 68
B.3. Registers . 68

C. High-Level Register Transfers for Selected Instructions 68

D. Linker scripts and crt0.s 71
D.1. crt0.s file used for embedded applications . 71
D.2. tiny.x linker script used for the embedded applications . 72

E. VHDL sources 73
E.1. Source code of alu.vhd . 73
E.2. Source code of alu muxes.vhd . 75
E.3. Source code of alu segment.vhd . 78
E.4. Source code of clock.vhd . 79
E.5. Source code of debugging.vhd . 80
E.6. Source code of do branch process.vhd . 82
E.7. Source code of input.vhd . 82
E.8. Source code of memory.vhd . 83
E.9. Source code of operation size control process.vhd . 86
E.10.Source code of register file.vhd . 86
E.11.Source code of seven segment driver.vhd . 88
E.12.Source code of state machine controller.vhd . 89
E.13.Source code of types.vhd . 90
E.14.Source code of xilinx dp ram.vhd . 90

F. Test Program sources 91
F.1. Source code of fib.c . 91
F.2. Source code of fvt.s . 91
F.3. Source code of 23instructions.s . 95

G. State Machine Compiler sources 96
G.1. Source code of alu optimisation.cc . 96
G.2. Source code of alu optimisation.h . 96
G.3. Source code of control.cc . 96
G.4. Source code of control.h . 100
G.5. Source code of main.cc . 101
G.6. Source code of ndfa dag.cc . 102
G.7. Source code of ndfa dag.h . 105
G.8. Source code of ndfa node.cc . 105
G.9. Source code of ndfa node.h . 116
G.10.Source code of opcode map reader.cc . 117
G.11.Source code of opcode map reader.h . 121
G.12.Source code of optimisation.cc . 122
G.13.Source code of optimisation.h . 124
G.14.Source code of programram.cc . 126
G.15.Source code of programram.hh . 127
G.16.Source code of state.cc . 128
G.17.Source code of state.h . 131
G.18.Source code of state machine.cc . 132
G.19.Source code of state machine.h . 138
G.20.Source code of state machine loader.cc . 139

iv

G.21.Source code of state machine loader.h . 142
G.22.Source code of utils.cc . 142
G.23.Source code of utils.h . 145

H. The Opcode Database 145
H.1. Source code of opcode map . 145

I. State Machine Sequences 147
I.1. Source code of alu a family.sm . 147
I.2. Source code of alu a family cmp.sm . 148
I.3. Source code of alu i cmp.sm . 149
I.4. Source code of alu i family.sm . 150
I.5. Source code of alu no cmp.sm . 150
I.6. Source code of alu no family.sm . 151
I.7. Source code of alu q family.sm . 152
I.8. Source code of branch.sm . 152
I.9. Source code of clr.sm . 153
I.10. Source code of decbranch.sm . 154
I.11. Source code of decode ea.sm . 155
I.12. Source code of decode ea and dereference.sm . 158
I.13. Source code of decode ea and store.sm . 160
I.14. Source code of fetch extension dword.sm . 161
I.15. Source code of fetch extension word.sm . 162
I.16. Source code of fetch immediate data.sm . 162
I.17. Source code of jmp.sm . 164
I.18. Source code of jsr.sm . 164
I.19. Source code of lea.sm . 165
I.20. Source code of link.sm . 166
I.21. Source code of move family.sm . 167
I.22. Source code of moveq.sm . 167
I.23. Source code of nop.sm . 168
I.24. Source code of pea.sm . 168
I.25. Source code of rts.sm . 169
I.26. Source code of scc.sm . 169
I.27. Source code of start.sm . 170
I.28. Source code of tst.sm . 171
I.29. Source code of unlk.sm . 172

v

Part I.
Introduction
The aim of this project is to demonstrate that a modular soft processor core can be produced. This core will
provide some or all of the features of a real processor: but it will be possible to leave out features that are not
needed for a particular application, due to the modular nature of the design. In this way, the size of the processor
can be minimised. Entire computer systems could potentially be built on a single chip, if each part was small
enough. This “system-on-a-chip” approach could reduce the cost, physical size and electrical power requirements
of an embedded system.

No fully modular processor has been built to date. The typical processor is either monolithic, with no
modularity whatsoever, or very simple modularity (for example, a version may be produced with a floating-point
unit on board). Until large-scale Field Programmable Gate Array (FPGA) technology became available, it was
not feasible to make a processor that was optimised for one particular application, because any changes to the
application would require a new processor, and this meant that a new piece of silicon would be required.

But now large FPGAs are available, it is possible to build a processor on one: The logical functions on the
FPGA can be easily reconfigured by software, so it is quite easy to prototype all sorts of different processor
designs at no cost. An FPGA makes an ideal test environment for a modular processor optimised for a particular
application. To date, however, no soft processor core has been modular: all have provided a fixed set of features.

This project aims to demonstrate that a modular processor can be built on an FPGA, and that it can be
optimised to run a particular application by leaving out the parts that are not required. There is no requirement
to build all the modules that would make up a complete processor, nor run all applications, but the project may
form the groundwork for later projects which do this.

1. Background and Literature

1.1. Soft Processor Cores

A soft processor core is effectively the working part of a CPU (central processing unit), described entirely by
some Hardware Definition Language (HDL), and placed on a Field Programmable Gate Array (FPGA). It does
the same job as a traditional “hard” processor, but it is implemented on an FPGA, instead of being implemented
directly onto non-reconfigurable silicon. T80 [Wallner 2002] and MyRisc [Wallander 1998] are two other soft
processors which were looked at during the project.

The workings of a processor are well described in “Computer Architecture: A Quantitative Approach”
[Hennessy 1996], which discusses the design principles involved in building a processor.

1.2. A Field Programmable Gate Array

An FPGA is an integrated circuit (IC) that can be programmed to carry out any logical function. FPGAs have a
huge number of gates (sometimes millions) on board, and these gates can be interconnected in any configuration
necessary to simulate a logic circuit. Interconnections are made entirely by software: a “synthesised” hardware
definition for a logic circuit can be uploaded to an FPGA, and the FPGA will then take on the features of that
logic circuit. The logic circuit is described by a hardware definition language (HDL).

An FPGA consists of a matrix of “Logic Cells”. Each cell on the FPGA that is available for the project (a
Xilinx Spartan-IIE XC2S300E) has a 4-input lookup table that can act as a logical function generator, a RAM,
or shift register. Each cell also contains a D-type flip-flop. The internal layout of the FPGA is illustrated in
Figure 1. On the left, the entire FPGA is shown: each “CLB” - Configurable Logic Block - contains four logic
cells. On the right, the internals of two logic cells are shown.

Using these, the Spartan-IIE can can represent up to 300,000 logic gates. The documentation for the device
is in [Xilinx 2002]. The development board with the FPGA on it is shown in Figure 2.

1

Figure 1: The internals of an FPGA, from [Xilinx 2002]

Figure 2: The “BurchEd 5” Spartan II-E board available for the project.

1.3. VHSIC Hardware Definition Language (VHDL)

VHDL is one of two hardware definition languages supported by the Xilinx Synthesis Tool (XST), which is a
program that constructs (“synthesises”) FPGA hardware definitions from a HDL. XST also supports Verilog,
and synthesis from circuit diagrams. XST is analogous to a compiler: just as a compiler translates source code in
a language such as C into low-level machine code, XST translates source code into the logical functions that will
implement it. These are then translated into FPGA programming instructions: a bit pattern that is downloaded
to the FPGA.

VHDL is not like a software language. Expressions in VHDL are essentially descriptions of logic devices, and
variables (known as “signals”) represent links between devices or registers. VHDL statements usually execute in
parallel: whereas statements written in a software language are almost always executed sequentially.

VHDL and Verilog have the same capabilities. But VHDL’s similarity to the programming language Ada
made it the clear choice for the implementation of this project. As the author was already familiar with Ada, it
was hoped that VHDL would be easier to learn than Verilog, and it would thus be possible to get started with
the project sooner. The author could also have attempted to design the processor as a circuit diagram. But this
would have been so low level that much more work would be required to build a working processor.

A guide to learning VHDL by Ashenden [Ashenden 1998] was studied. It was also possible to learn some
VHDL techniques by examining code from other projects. As is described on Page 13.2, the design of the
processor’s ALU comes from the T80 soft processor core.

1.4. The Motorola 68020

As will be discussed later, it was decided to base the project around the Motorola 68020 processor. The manual
for the processor [Motorola 1985] was obtained. It describes everything that a low level programmer would
need to know in order to use the processor: the entire instruction set is described in detail along with plenty of
information about the other features of the processor. To give a better understanding of the decisions made in
designing the 68020, a paper by one of the designers of the 68000 was also read [Tredennick 1988].

2

Part II.
High-level Project Decisions

2. Should the design be based on an existing one?

As stated earlier, the project aims to produce a modular soft processor core. The first decision facing the designer
is whether the processor should be an entirely new design, or based on an existing design. Here, the answer is
clear. The soft processor core should be based on an existing processor, so that existing development tools can
be used to develop for it. Lots of technical information will be available for an existing design, and the processor
will be more compatible with existing software and familiar to programmers who have worked with the original
processor - making it more acceptable if it were to be reused in other projects.

This choice saves a lot of time, because as well as producing all the required development tools (a compiler
and debugger as a minimum), the development of an entirely new processor would require extensive research into
the best design. Designing an entirely new processor requires a lot of work to determine the optimum instruction
set and internal layout.

3. Which processor should the soft core be based upon?

The designer must now choose a processor to base the project around. The aim of the project is to demonstrate
modularity, so the processor needs to have the characteristic that many of its features are not always needed.

The processor must also be quite simple, so it is feasible (within the project time-scale) to build a working
version of the processor that is able to run some applications. This might not be possible if the processor was
overly complicated.

4. Which processor should be chosen?

Many types of processor are suitable for this project. The Intel 80386, the ARM processor, the Motorola 68020,
SPARC and MIPS are all powerful 32 bit processors that have some modularity, and are all very well documented
and understood. The choice between them is really only based on which has the greatest modularity, and which
will be the least difficult to implement.

The RISC (Restricted Instruction Set Computing) processors are not such a good choice for the project. The
RISC processors listed above are the ARM, SPARC, and MIPS. These processors have a small instruction set,
without complicated instructions such as division. Their instruction sets are designed so that a high level language
compiler can use practically all the instructions. And this means that few instructions can be omitted. It will be
difficult to demonstrate modularity with a RISC processor, even though implementation of the entire processor
is simpler because there are fewer instructions. For this reason, it was decided not to attempt implementation
of the ARM, SPARC or MIPS processors.

Equally, the 80386 is a poor choice for the project because it is too complex. The CISC (Complex Instruction
Set Computing) architecture of the 80386 is very complicated since it had to be binary compatible with two 16
bit predecessors: the 8086 and 80286. The 80386 has hundreds of instructions, and an incredibly complicated
system for instruction decoding. It would be very difficult to understand the whole architecture well enough to
be able to implement any sort of subset.

This leaves the CISC Motorola 68020. It is based only on the 32 bit 68000 and makes no significant archi-
tectural extensions. This makes it a much cleaner, and therefore easy to understand, architecture. It also has
only half the instructions of the 80386 and less addressing modes.

The 68020’s instruction decoder is far simpler than the 80386 instruction decoder: in fact it has more in
common with a typical RISC decoder. The instruction coding scheme is straightforward: all opcodes are 16 bits
in width, and the fields in the instruction bits are usually in the same place. For example, register numbers

3

appear in only one of two places in the instruction - from bits 2 to 0, and from bits 11 to 9. This makes the
design of an instruction decoder far easier.

5. Restating the aims of the project in terms of the chosen
processor

The aim of this project is to demonstrate that a highly modular practical soft processor core can be produced.
The processor will be a subset of the 68020, and able to run some, if not all, 68020 programs. The processor will
be individually tailored to run a particular program: it will be generated in VHDL by putting modules together
to support exactly the features needed by that program.

By the end of the project, it is hoped that a minimal processor may be built for an arbitrary program written
in C. The processor will be as small as reasonably possible for a particular application.

Part III.
Modular Processor Design Decisions

6. Processor Design

In this section of the project, the research that was carried out into processor design is examined. It was decided
that the only way to approach the project that would produce a useful result would be to implement an actual
processor, capable of running Motorola 68020 code directly. This may seem an obvious choice, but there are
a few alternatives which will be discussed briefly before an examination of the features that a processor would
need to have.

6.1. Alternatives to a complete processor implementation

Software Interpreter
An alternative to implementing an actual processor was to implement an interpreter for the 68020 code. Inter-

preters are found in emulators - programs that allow one type of computer to run programs written for another
type. A 68020 interpreter would translate each 68020 machine instruction to some other type of instruction,
then execute them. This would have the same effect as a real 68020 processor. A processor of some sort would
still be required to run the interpreter. But any type of processor could be used: any existing soft processor core
would be suitable, as would a very simple new type of processor intended only to run the interpreter software.

The advantage to the interpreter approach is that it allows all of the 68020 instruction decoding and execution
to take place in software. Software is very easy to write - easier than a hardware description. But, more than
that, software is easy to change. It’s easy to drop support for a particular instruction: the code to run it can be
left out. There are many ways to do this. Perhaps the most well known would be the C preprocessor #ifdef
directive, which allows blocks of code to be marked and included in compilation only if a particular label is
#defined. So an interpreter could easily be optimised for a particular application.

The disadvantages of the interpreter approach are twofold. Firstly, interpreting a language is always slower
than running it “natively” - that is, directly on the processor it was intended for, unless for some reason the
interpreting processor is significantly faster than the native processor.

A second disadvantage concerns the physical size of the interpreter on the FPGA. There are a limited number
of logic gates on an FPGA, and certain approaches to building the processor will use up more gates than others.
An interpreted approach will certainly use up more gates than a native processor, because it must include both

4

a processor to run the interpreter software, and the software itself, probably stored in some ROM (read-only
memory).

Although an interpreter approach would allow the project to be completed almost entirely in software, which
would make implementation far easier, it seems unlikely that it would make a very good demonstration of
modularity. It doesn’t really matter if the processor is quite slow, but there will be a serious problem if it takes
up most of the FPGA. Part of the aim of the project is to create a minimal processor - which implies the creation
of a processor that takes up a minimal number of logic gates.

VHDL Interpreter
One way to make the software interpreter smaller would be to implement it directly in VHDL. VHDL does allow

some degree of sequential programming, so it may be possible to implement an interpreter entirely in VHDL.
Statements in a VHDL process are “run” in the order they appear: by including wait statements, execution can
be stopped until an event of some type occurs.

This initially seemed like a good plan, since it is a mixture of a hardware and software approach. It was
hoped that the synthesiser would examine the VHDL and work out the minimum hardware needed to run it.
All the state machines, registers, adders and subtracters required would be inferred from the VHDL. So some
research was carried out: would this be possible?

Unfortunately, it was found that XST does not handle sequential VHDL very well. It is only able to handle
VHDL processes that run continuously, or run on a clock edge - it cannot handle the wait for or wait until
statements in the general case. So this alternative is ruled out by the lack of support from XST.

6.2. A real processor

Because the alternatives were not really feasible, the only way to approach the project was to develop a complete
soft processor core, with the ability to be modularised. Research was carried out into the features of a complete
processor. All contain the following elements:

• Instruction Decoder • Register File
• Control Logic • Links between Components
• Arithmetic and Logic Unit (ALU)

The original 68020 is no exception: and all five features will be essential in any implementation of the 68020.
In this section, the features are discussed with respect to the project.

6.3. Instruction Decoder and Control Logic

The task of the instruction decoder is to take a machine instruction and determine how the processor should
execute that instruction. Machine instructions on the 68020 are all 16 bit words. These 16 bits are called an
opcode, or operation code. They tell the processor what operation should be performed, and, if that operation is
to be performed on some data, where that data is to be obtained from.

The job of the control logic is to manage the many control lines that connect to the processor’s components.
These lines route data around the processor, arrange for data to be fetched from memory, and control components
such as the ALU and register file. Control logic typically takes one of two forms which will be discussed in this
section.

A microcoded control unit
In CISC processors, the control logic is often “microcode”. The processor is actually controlled by a small

program, known as a microprogram, that exists in an internal ROM. Microcode allows very complex instructions
to be implemented in a very small area of silicon.

The microcoded control unit shown in Figure 3 is a finite state machine that generates an output for each
state: a “Moore machine”. The state variable is called the µPC - microprogram counter: and it is stored in a
register and updated to the next state on every clock cycle. The main component is the large ROM table. Each
row of this table represents one state. Most of the data in the row goes to the processor control lines. However,

5

Instruction
Register

Input

011101 001011110111100101
001110 111110000111111101
111000 000110110110100100
110110 110001000111011010
111010 001010001100101011

110101 000000010101010011
111000 101011010010000110
100101 100011101110100110
010011 101010001010111001
000111 100010011110100000

Microcode
ROM
Table

Control Line Outputs

PC
 R

eg
is

te
r

µ

Instruction
Decoder

Figure 3: An example of a Microcoded Control Unit

some go back to select the next state. The multiplexer1 allows the microcode machine to choose whether the
next state number comes from the microcode itself, or from the instruction decoder.

Thus, the microcode machine can run through a whole sequence of control line settings, causing data to flow
through the processor in an appropriate manner. This allows it to fetch and execute instructions.

There are two problems with the use of microcode to provide the control logic. One is caused by the
complexity of the bit patterns. Some tool is needed to generate the table if the microcode is going to take on
any realistic level of complexity. Several have been invented over the years, and these are known as HLMLs:
high level microcode languages. And, unfortunately, the use of tools to generate microcode leads to sub-optimal
sequences, because the possibilities for optimisation are hidden by the HLML. As [Tredennick 1988] states:

People think of microcoding as programming with wide opcodes. [This] common approach is the
reason microcoded implementations are slower.

A further difficulty with a microcoded approach is that the microcode will be kept separate from the VHDL
by necessity (VHDL cannot easily contain such things), but the two must be kept synchronised. If components
are added or changed, it might be necessary to update large sections of microcode. So some interface between
the two that ensured the two stayed in synchronisation would be essential.

A hardwired control unit
An alternative type of control logic used in some processors is known as “hardwired”. Here, the appropriate

sequence of control line outputs is generated by a minimal set of logical functions, which take the output of the
instruction decoder and the output of a sequence generator as their inputs. These logical functions are provided
by discrete logic gates.

Instruction
Register

Input C
on

tr
ol

 L
in

e
O

ut
pu

ts

St
at

e
R

eg
is

te
r

Hardwired
control
logic

Discrete
logical functions
make up the
hardwired control
logic

Figure 4: An example of a Hardwired Control Unit

The hardwired control unit shown in Figure 4 has the same function as the microcoded control unit in Figure
3. Here, however, the current state (stored in the state register) and the instruction register input are together

1 The multiplexer is the the device between the instruction decoder and the µPC register. For more information about
the function of a multiplexer, see Page 67.

6

used to calculate (through a series of combinatorial logic functions) the next state and the control line states.
There is no ROM access, so the machine is as fast as the logic that it is built from. The unit is another Moore
machine, but this time the next state is calculated, rather than found in a table.

There are two difficulties in taking this approach. The first is similar to a problem with microcode: how can
the correct sequence of control outputs be defined? The second difficulty here is arranging for a minimum set of
logic gates to be used in the hardwired control unit. Fortunately, this task is easily carried out by a computer:
in fact, the ability is built in to the Xilinx Synthesis Tool (XST). The algorithm that is typically used is the
Quine-McCluskey method for minimisation of boolean functions.

In a hardwired control unit, there are no lookups in slow ROM - the control information is available imme-
diately. And the fact that the control line states are not written as what appears to be a sequential program
encourages the designer to maximise the parallelism that is possible. However, the amount of silicon, or in this
case the amount of FPGA cells, required to implement the hardwired control unit could be a limiting factor.

The best control unit for a particular processor
In a RISC processor, like the ARM or MIPS, many instructions are so simple that there is no need for a

microprogram. Instead, the instruction decoder directly executes many instructions by setting control lines
itself. Very little additional control logic is needed, so a hardwired control unit is quite feasible. This is found in
the ARM series of processors.

Microcode is traditionally used to control CISC processors - particularly the 68020 and its contemporary,
the 80386. The 68020 has around 85kbits of microcode in on-board ROM, according to [Tredennick 1988]. This
microcode actually exists in two levels, which reduces the space required by 20%.

The fact that the designers of the 68020 took this approach would seem to suggest that this project should
go in a similar direction, as it indicates that an implementation of the 68020 is likely to be too complex for a
purely hardwired approach. However, as will be discussed later, a hardwired approach is actually far better due
to the high level features of VHDL.

6.4. Arithmetic and Logic Unit (ALU)

As its name suggests, the ALU provides the processor with primitive arithmetic and logical operations. It is
able to add two values (an arithmetic operation), or find the logical AND of two values (a logical operation). A
typical ALU, and indeed the 68020 ALU, provides add, subtract, logical and, logical or, and exclusive-or (known
as EOR) functions.

Some ALUs may also support multiplication and division directly, but it is quite common to implement these
operations using repeated adds and shifts, since this requires less hardware. The 68020 uses the latter approach,
as evidenced by the fact that such operations take a minimum of 25 clock cycles, compared to a maximum of 3
clock cycles for an addition [Motorola 1985].

The project’s ALU should provide the same features as the real 68020 ALU. All of the features are likely to
be used by any application: and none can easily be emulated in software. It may be, however, that some ALU
features can be modularised and removed for programs that do not need them.

The ALU makes up the processor’s “data path”, or “execution unit”, along with the register file.

6.5. Register File

The register file stores temporary data that the running program is using. Programs typically store as many
of their variables in registers as possible. This is done to take advantage of the high speed of register access
compared to memory access. The 68020 has sixteen general purpose registers, split into two groups of eight. One
group is for data registers: these are typically used for storing operands for computations. The other group is
for address registers. These are typically used for holding pointers to locations in memory. The registers are all
32 bits wide.

All of the registers in the register file can be accessed by the programmer. It is worth noting, however,
that a typical processor will have some other registers that are not accessible externally. These temporary
registers store values that are internal to the processor. For example, many processors have an instruction

7

register (conventionally abbreviated to IR) which stores the currently executing instruction so that all parts of
the processor may refer to it. Programs cannot access IR directly.

The modular processor may be able to omit registers that are never used by the application being executed.

6.6. Links between Components

As may be expected, whenever data needs to move between two registers, there must be a link between them.
Links usually run from register to register, or register to ALU, via multiplexers. The multiplexers allow a
particular data source to be chosen as the input to a component. The designer wishes to minimise the number
of links, because each link that exists requires extra logic to implement and thus takes up more space on the
FPGA.

7. The framework for a minimal processor

In this section, the basic framework of a processor is examined. The processor produced by the project will, by
necessity, be more complex than this, but it will follow the basic design: an instruction set processor with a load
store architecture.

IR

PC

MDR

MAR

ALU

REGISTER
FILE

ALU input A

ALU input B

Control Unit Output

Reg File Output B

Reg File Output A

Reg File Input

Memory Address Source

(32)

(32)

(32)

(32)

(32)

(32) (32)

(32)

(32)

(32)

(32)

(32)

Figure 5: A minimal processor

Figure 5 illustrates the components of a minimal processor2. The control unit is not illustrated, because
drawing it would also require the drawing of control lines to all registers, multiplexers and the ALU, and this
would complicate the diagram unnecessarily.

The ALU is clearly shown, along with its links to the register file, the memory data register (MDR), the
memory address register (MAR), and the program counter (PC). The instruction register (IR) is also shown.
The arrows indicate the direction that data may flow in. New data is only loaded into a register when the control
unit allows it to be.

It is a convention in processor design to represent the interface to the machine’s memory using two special
registers: MDR and MAR. When the processor wishes to read from memory, it loads the required address into
MAR and (soon after) reads the data at that address from MDR. When the processor wishes to write to memory,
it loads the data to be written into MDR and the address to be written to into MAR.

The reader may wonder why the PC register is separated from the others. It is separated so that it may be
loaded directly into MAR. It is thus possible to fetch an instruction into IR and increment PC at the same time.

2Page 67 has more information on the symbols used in the diagram

8

7.1. How this allows an application to be executed

The model above implements what is known as a load-store architecture, as described in [Hennessy 1996], Chapter
2. The 68020 also has a load-store design, in common with most modern processors. Alternatives include the
very simple accumulator architecture (which has only one general purpose register) and the stack architecture.
These designs are not suitable for a 68020 clone: the basic architecture must be the same.

The minimal processor described in Figure 5 is, with the correct control logic, sufficient to execute any
computer program. We can say this because:

It is able to fetch and execute instructions. Instructions are fetched from memory, by loading the PC
value into MAR (there is a direct route) and then loading the MDR value into IR (again, there is a direct
route).

It is able to branch conditionally and unconditionally. Instructions in a program are not necessarily
executed in the order they appear in memory. Some cause execution to branch (jump) to another memory
location. This is done by loading a new value into PC. On the 68020, branches of this type are done using
instructions such as:

BRA n - The value n is added to PC: an unconditional branch

BEQ n - The value n is added to PC if the result of the last ALU operation was zero: a conditional branch

It is able to do arithmetic operations and make decisions based on the results. Since the ALU
inputs can be connected to any two registers, and the output can be stored in any register, it is possible
to add, subtract or apply a logical operation to any register pair.

The register values can be loaded and stored in memory (using the MDR and MAR registers), so these
operations can be carried out on memory locations too.

The processor can make decisions based on the results of a computation by using its ability to branch
conditionally on those results.

It is the ability to make decisions based on results that sets the computer apart from an adding machine.
With just the above features, any program could be implemented assuming that sufficient memory existed to
run it: this processor, like the processor in any computer, implements a Turing machine with finite memory. It
is, therefore, at least as capable as all others of running any program (although it is not necessarily as fast!).

7.2. More complex features of the 68020

In this section, the more complex features of the 68020 are discussed. These features are not essential for a
working copy of the processor, and many of them can be omitted or cut down in some way. These features
include:

• Bus driving • Decimal Support
• Pipelining • Arithmetic and Logical Shifter
• Interrupts and Traps • Advanced Addressing Modes
• Memory cache • Coprocessor/Multiprocessor support

Bus driving
The 68020, like most processors, is intended to sit on a bus with other devices, such as RAM and ROM ICs.3

A bus is a collection of (in this case) 32 data lines, with the property that more than one of the devices connected
to the lines may write to them, but not at the same time. This allows two devices to exchange data using the

3 RAM stands for random-access memory: this memory can be written to and read. ROM, on the other hand, is fixed
when the system is built, and can only be read.

9

bus, so (for example) data can be read from and written to the RAM. The 68020 has some special hardware that
controls the bus and arranges for data to be fetched and stored using it.

In this project, the designer is spared the difficulty of implementing bus driving logic, because the processor
only needs to exist on an FPGA. All devices can easily be connected directly to the processor, so there is no
need for a bus.

Since there is no advantage to simulating a bus on the FPGA, the bus driving features of the 68020 can be
ignored. This will save a lot of development time, as those features are very complicated. 51 pages of the manual
[Motorola 1985] are taken up by describing how to use the bus: and none of this complexity needs to be part of
the project.

As a side note, an FPGA bus standard called Wishbone [Herveille 2002] does exist. The main purpose of
this bus standard is to give FPGA components a standard interconnection interface. The advantage to making
the project support Wishbone is that it would allow the soft processor core to be easily connected to the many
other types of device that can exist on an FPGA, such as serial ports, video drivers, and timers. However, this
is not the same as the 68020 bus standard, and there is certainly no requirement to implement it in order to get
the processor to work. It should be thought of as a possible extension to the work.

Pipelining
The 68020 has a three stage instruction pipe. This allows it to execute some operations concurrently. Although

pipelines allow a processor to run significantly faster, and are found in all modern processors as a result, they
are difficult to implement. The pipeline implementor must be careful to avoid many hazards, and a lot more
development and testing is required. As pipelining is just a feature to speed up the processor, it can be left out.

Interrupts and Traps
Interrupts and traps are another non-essential feature of the 68020: it is quite possible to demonstrate a

working modular processor that doesn’t support interrupts or traps.
Interrupts are generated when an external device wishes to get the attention of the processor. Traps, on the

other hand, are generated by software: either when an error occurs (an attempt to divide by zero is a typical
example), when a program wishes to make a system call, or when virtual memory paging is required. They are
known as “software interrupts” on other architectures.

Since the project processor is intended for use in a small embedded system, there is no need for virtual
memory or system calls. Other types of trap do not have to be supported either, since there are other ways of
handling error conditions.

There is no need to support interrupts either. It is perfectly possible to build a computer system without
them, since devices can be “polled” instead. Polling is a process of asking each device in turn if it has any new
data. This is slower and tends to waste the processor’s time. However, it is much easier than implementing a
way to handle interrupts.

Memory Cache
The decision to leave out a memory cache is simple: there is no advantage to having one. As all the ROM

and RAM can be on board the FPGA, access to all of it will take only one clock cycle. There is no advantage
to using a cache unless access to memory is significantly slower.

Decimal Support
The 68020 has limited support for working with binary coded decimal numbers, through instructions such as

ABCD (decimal add). These features are not used by many compilers - in fact, the well-known compiler GCC will
never use them. They are not essential to the operation of the processor: all programs can work without them
by converting to and from decimal format, and using normal binary arithmetic. As special hardware support is
needed for these instructions, it is best if they are left out entirely.

Arithmetic and Logical Shifter
Arithmetic and logical shifts are not particularly complicated logical operations. A shift involves moving every

10

bit in a register to the left or to the right by a certain number of bits. Special hardware is needed to support
this. On the 68020, it is possible to shift the contents of a register by up to 32 bits in a single clock cycle: the
number of bits shifted doesn’t affect the execution time. The shift hardware is therefore particularly complex.

Since a shifter is by no means an essential part of the processor (although it is a useful part), it will be
omitted. Unlike the ALU, it is perfectly possible to demonstrate a working processor without a shifter. If a
shifter is required for a particular application, it can be implemented as an extra feature at a later date.

Advanced Addressing Modes
The 68020 has 18 addressing modes, eight of them requiring additional hardware support (in the form of up

to two temporary registers and a scaler, which multiplies an index register by a power of two). These modes
are very powerful, and allow fast access to some very complicated data structures. Although it is true that a
particular program is unlikely to use all of them, GCC is capable of generating code to use each of them in rare
situations. Unfortunately, due to the extra hardware requirements, this complicates the processor design.

As a complete set of addressing modes is not required to demonstrate that the processor works correctly, all
of the modes requiring additional hardware will be left out of this project. This will simplify implementation and
testing of the processor, with the disadvantage that certain C programs will not run on the processor. Certain C
data structures (specifically “struct”) must be avoided so that the C compiler doesn’t attempt to generate code
using the unavailable modes. However, it will be quite possible to add support for these modes at a later date.

Coprocessor/Multiprocessor support
The 68020 has support for an optional coprocessor. Implementing this type of support is outside the scope of

this project. The same is true of the 68020’s support for multiprocessing.

8. Compiling and testing 68020 programs

It was realised at the beginning of the project that some way to build and test 68020 programs would be required.
Since it was hoped that the processor would be able to run arbitrary C programs, a C compiler for the 68020 would
be required. Additionally, some way to test those programs independently would be needed. If the programs
could not be tested on some “reference” system, it would not be clear whether any problems that might occur
were due to bugs in the program, or bugs in the processor itself.

An ideal build and test environment would be provided by a 68020-based computer system. Unfortunately,
no such system was available for the project. The alternative available was a combination of a cross compiler
and an emulator, allowing 68020 programs to be compiled and run on a PC.

The cross compiler chosen was GCC: the GNU Compiler Collection. This compiler could run on the Depart-
ment’s Linux PCs, and produce executable code for the 68020. There are, of course, some alternatives to GCC.
The 68000 series of processors formed the basis for the Amiga, and original versions of the Apple Macintosh,
and Unix workstations from Sun and Silicon Graphics. With such wide industry acceptance, it is no surprise
that plenty of compilers for 68020 processors were built. Many, however, are commercial software and are not
available for free. Out of the free compilers, GCC is by far the most developed. Since it forms the basis for
successful free software such as the Linux operating system, a great deal of work has been put into its continued
development, and the compiler it includes is cutting-edge. It is also well known and understood.

The first stage in building GCC on the Department’s Linux systems was to build a cross assembler. So the
GNU Assembler (gas) was built from the GNU binutils package, with support for assembling 68020 code. Once
this had been built, GCC was built using it, producing the cross compiler.

8.1. GCC Compilation Issues

One problem that occurred during GCC compilation was a missing crt0.o file. Discussion of this problem with
Department staff indicated that the function of this file is to provide a run-time setup for the program. When
an operating system begins executing a program, it provides the program with information about the current
execution environment and the program’s parameters. The crt0.o file is highly operating system dependent: so

11

GCC doesn’t provide a generic version. It is, however, required by the cross linker: any program that is produced
must begin with the crt0 preamble.

The solution that was found to this problem was to modify a sample crt0.s file from the source of the GNU
C library, glibc. A cut-down version was produced that would just set up the stack and start execution. It can
be seen in Section D.1. It takes out support for the environment and gives the stack pointer a fixed value.

Another issue was that a linker script was required. A linker script defines the memory locations that the
program and its data will occupy. Since the intention is to compile programs for an embedded system, these
locations are fixed. The memory map in the linker file must, however, match the one defined by the architecture.

A memory map describes what various memory locations are used for. It is part of the architecture: processors
don’t attempt to define the memory map. In a computer system, memory is traditionally divided between three
things: RAM, ROM, and I/O devices. When a program accesses a memory address, the memory mapping
hardware decides (based upon the address) where the data should come from or go to. An access to memory
locations 0 through 1023 might load data from ROM, whereas an access to locations 1024 through 2047 might
load data from RAM. Memory maps are not complicated things. Usually, they are implemented by allowing one
or two bits of the address to select the memory device in use.

A simple memory map was decided upon, and can be seen in Table 1. It defines 4096 bytes (abbreviated to
4Kbytes) of RAM, and 4096 bytes of ROM. This is all quite arbitrary. It so happens, however, that there is more
than enough room for this amount of RAM on the FPGA, in special-purpose memory cells. And 4096 bytes
should be more than enough ROM to contain a small embedded application: certainly enough to demonstrate
the processor’s abilities.

The map was given to the linker script, tiny.x, which can be seen in Section D.2. The linker script was
based on m68kaout.x, supplied with GNU binutils. The addresses of each segment were changed: the program
memory starts at 0 (in ROM) and the initial stack address was set to 0x20004 (the top of the RAM). The output
device shown, at address 0x8000, allows programs to send a single byte of output (for example, the result of
some computation) to a display. The display is discussed further in Section 10.7.

Table 1: Memory Map for 68020 clone

Addresses between.. map to.. Linker segment Used for:
0x0000 - 0x07ff ROM .text The program
0x0800 - 0x0eff ROM .data Constant data
0x0f00 - 0x0fff ROM .other Other data
0x1000 - 0x1fff RAM .bss Stack and global variables
0x8000 - 0x8000 I/O Output device (display)

8.2. The Emulator

A 68020 emulator was needed to allow programs to be tested. An emulator is a program that allows code from
one system to be run on another, by providing a virtual machine. An emulator was required that was freely
available, supported 68020 instructions and could be made to use the memory map described in Table 1. So the
emulator that is chosen must have a changeable architecture.

No freely available 68020 emulator was found, but two free 68000 emulators were found. 68000 processors
are much the same as 68020 processors: but the 68020 has a few more instructions, and some instructions have
been extended. Physically, the two processors are quite different: for instance, the 68000 has a 16 bit data bus,
and the 68020 has a 32 bit data bus. For emulation purposes, only the instruction set differences are of any
importance, and this difference is not necessarily a problem.

4The prefix “0x” indicates that a number is a hexadecimal value. This is the C convention, and it is used throughout this
document. Hexadecimal values are in base 16, with letters a through f representing decimal values 10 through 15.

12

The first emulator, Generator[Ponder 2001], was found to have a fixed architecture - it would be very difficult
to use it for testing 68020 programs. The second emulator, vm68k[Sasayama 2001], was a virtual machine for
the 68000 in a library. It would be quite easy to build an architecture around it, since it comes with nothing
more than support for the processor. A wrapper must be written to provide the architecture and the program it
should execute. vm68k was written as part of an emulator for a 68000-based workstation, but it is fortunately
well abstracted from the architecture of the workstation. It proved to be easy to use in this application.

Reading program binaries
One question arises from the emulator research: how are program files to be read in? Program files, or binaries,

are not necessarily “flat” (unstructured) files. When they are generated by a linker, they are often generated with
more than one segment. There are many different formats for these files: commonly used ones include COFF,
ELF, and a.out. Typically, the different segments will go to different locations in memory. Sometimes, there will
also be a symbol table, listing all the assembly labels that appeared in the program for debugging purposes.

Making a program to read one of these formats is not easy. Of course, the specifications are all available
freely for all the formats supported by GCC, and reference implementations are included in some GCC programs,
such as objdump (a disassembler). However, it was decided that the effort that would be put into writing the
code for reading ELF or a.out would be better spent on more relevant parts of the project. So the very simple
“Intel Hex” output format was chosen. Intel Hex is a format that is familiar to the author from earlier work,
and it is so simple that a reader can be written in minutes.

9. What features can be modularised?

Since it is has now been decided which processor features will be implemented and which will be omitted, it
is now important to decide which features of the processor will be modularised. Modularising a feature may
mean that it can be omitted entirely (for example, support for a particular instruction might be removed) or
that only part of it might be available (for example, the exclusive-OR feature might be left out of the ALU if
the program didn’t need it). It is a matter of optimising the processor to run a particular program. It is not a
case of making each feature into a standalone module, such as a VHDL entity. The modules are not necessarily
distinct from each other, so the process is really a matter of optimising a particular part, or set of parts, so that
certain features are only enabled if necessary.

After some research and thought, the following features of the processor were thought to be capable of being
modularised:-

ALU operations: Not all the ALU operations are necessary for every program. Although ADD is always
required (for internal operations such as PC ← PC + 2), EOR, OR, AND and SUB may not always be
needed.

Registers: Some programs will not use every register available in the processor’s register file. Short assembly
programs, in particular, will only use a few of the registers.

Addressing Mode Support: Some of the 68020’s addressing modes are rarely useful, and as will be discussed
later, this allows some addressing modes to be left out entirely.

Instruction Support: As is the case with addressing modes, the 68020 has many more instructions than
would be needed in a typical program.

Since support for particular instructions can easily be left out of both the instruction decoder and the
control unit state machine, there is a clear opportunity for modularity here.

Addressing Width: Suppose it is known that the highest address that the program will ever access is, say,
0x8000. In this case, there is no need for more than 16 bits in address lines, buses and registers, because
the 17th bit and all higher bits will always be zero. The processor implementation only needs to have
support for addresses that will actually be used, so this part can also be optimised.

13

9.1. Modularisation of Instruction Support

Of all the modularisation tasks, the greatest improvement to the size of the processor will be gained by modu-
larising support for machine instructions, and removing unnecessary ones.

The 68020 is a CISC processor. Compilers are notoriously poor at finding the best instructions to use when
compiling a program for a CISC processor. Finding the optimum instruction is a very difficult search problem,
so compilers tend to stick to a subset of available instructions. For instance, GCC will never use the 68020
instructions ABCD, PACK or MOVEM5. All of these do complex things that might be useful to a program, but the
problem of working out how best to apply them is too complex for GCC, and indeed all but the most specialised
compilers.

And even if GCC could generate most of the 68020 instructions, all of those instructions could never appear
in the type of small program that can be run on an embedded system. The program would simply be too short
to hold them all.

So typical programs won’t use all 68020 instructions. Since the control store takes up much of the space on
the 68020 die, it is certain that a large improvement would result from modularising support for each instruction,
and leaving out the ones that are not required. Consequently, much of the project work will be directed into it.

The modularisation is achieved by generating the instruction decoder and control unit state machine - some
program will be written that takes a 68020 program as input, and produces the minimal instruction decoder and
control unit state machine to execute it. It is a matter of examining every opcode used by the 68020 program,
working out which instructions are needed to provide the functionality, and then generating the VHDL to provide
instruction decoding and control line sequencing for those opcodes. This would satisfy part of the main aim of
the project by tailoring these components to the program.

9.2. Modularisation of Registers

Depending on the implementation of the register file, it may be possible to modularise each register, making each
one removable. This could lead to a substantial saving in logic. Each register requires 32 flip flops to implement
and also at least 32 data links running to and from it. Clearly, if this type of implementation is chosen, the fewer
registers there are the better.

Unused registers would be detected by scanning the opcodes (in the program scanner, discussed in Section
11.3) and making a note of all registers that are used. Registers not in this set could be eliminated. This
functionality could be built into the generator program for producing the instruction decoder and state machine.

9.3. Modularisation of ALU operations

As with the register file modularisation, implementation of this feature would be done by scanning the opcodes
in the 68020 program. Each opcode would be examined to determine which ALU operations it would require.
The set of required ALU operations would be built up and used to generate an ALU with support for those
operations and no others.

9.4. Modularisation of addressing modes

The 68020 has 18 addressing modes, most of which are rarely used. [Hennessy 1996] has some interesting statistics
on addressing mode usage in Chapter 2. Hennessy and Patterson evaluated three well-known programs (TeX,
gcc and spice) on a VAX system6, generating statistics on their use of a number of addressing modes. Figure 6
shows their results. As can be seen, addressing mode usage varies from program to program. Spice rarely uses
the “Register Deferred” mode, and TeX never uses the “Scaled” addressing mode. This has a lot to do with

5 This can be seen by looking at the part of GCC that generates 68020 code. A grep on the files involved, in the GCC
source tree at gcc/config/m68k, indicates that these opcodes can never be produced by GCC from a high-level language.

6 VAX systems are CISC machines that may be considered to be cousins of the 68000: they are both descendants of the
PDP-11 minicomputer. The set of VAX addressing modes is very similar to the set of 68000 addressing modes.

14

the compiler used as well as the actual architecture of the programs, but the point that should be noted is that
typical programs rarely, if ever, need all the addressing modes. This is especially true of short programs.

Figure 6: Usage of memory addressing modes in three programs (from [Hennessy 1996], page 76)

Each addressing mode could be modularised, allowing unused modes to be left out. This would be imple-
mented, as before, by scanning the program’s opcodes and making a note of all the addressing modes that are
used. Leaving out an addressing mode would save the logic in the control unit that implemented the sequence
for it.

9.5. Optimisation of the Addressing Width

The main problem that inhibits this optimisation is that the designer must find a way to work out what addresses
will be used by a program. The data width of address handling logic must be enough to represent all addresses
used by the program.

The range of addresses is known by the writer of the 68020 program, and something that is known when the
memory map is decided, but not something that the opcode scanning program could work out.

It is not possible to infer the range of addresses that will be used by scanning through the opcodes. Finding
this would generally require the program to be run, since not all the addresses that are used are given in the
binary - some are calculated at runtime. The program, however, might run forever. In this case, there would
be an infinite number of addresses computed. Although in specific cases it would be quite clear that all the
addresses would be within specific bounds (a sequence would emerge), in the general case no such pattern could
be seen. This is similar to the halting problem: it is impossible to tell, in general, whether a program will ever
terminate.

So, in this case, the maximum address must be specified by the user in some other way. The generator would
then produce all address-related components with the appropriate bit width.

9.6. Writing the generator

Writing the generator was quite an ambitious undertaking, and so the task was split into a number of implemen-
tation sub-tasks that could be completed individually:

• Writing the control unit generator (Section 10.1)
• Writing a minimal instruction decoder generator (Section 10.2)
• Adding any other components to the processor framework - ALU, etc. (Sections 10.3 to 10.7)
• Writing a program scanner to determine what opcodes are needed (Section 11.3)
• Writing sequencing instructions for opcodes (Section 12)

10. Designing processor components in VHDL

In this section, various methods for designing and implementing the processor components in VHDL are discussed.

15

10.1. Control Logic

VHDL makes the implementation of a hardwired control unit quite easy: some of its high-level features are ideally
suited to this application. State machines are not difficult to write in VHDL, and control line assignments are
trivial, because using VHDL removes the difficulty of working out the minimal discrete logic for a hardwired
control unit.

In hardware, every control line is just a binary number: ‘0’ or ‘1’, clear or set. VHDL allows a higher level
view to be taken. Control lines are given names (like variables in a software language). Although they can carry
simple binary numbers, it is often useful to use “enumerated types”. In these cases, the data takes one of a few
preset values, each described by name. So the function of a component can be set without working at the binary
level, making it easy to change. The designer can also easily see where each operation takes place, since they
are described by name and not by bit pattern. Adding new functions to each component is easy. XST is able to
check that these types are used correctly, so a line can never be set to an incorrect value. XST also decides how
each value is mapped to a low level arrangement of bits.

Writing a state machine in VHDL
A state machine consists of a register (to contain the state number) and a decoder for the next state. In the

case of a control unit, the state decoder will also produce control line outputs. These features can be seen in the
sample VHDL state machine in Figure 7.

decoder : process (state) is -- state is the state variable.

begin

next <= "0000" ;

... -- default control line assignments

... -- are made here.

case state is

when "0000" => ... -- things that should happen in

... -- state 0 are done here.

next <= "0001" ; -- next state is state 1.

when "0001" => ... -- things that should happen in

... -- state 1 are done here.

if (input = ’1’) then -- if input is 1, branch to

next <= "0010" ; -- state 2, otherwise state 3.

else

next <= "0011" ;

end if ;

...

end case ;

end process ;

state_machine_register : process (next , clock) is

begin

if (clock = ’1’) -- the state changes on a clock

and (clock’event) then -- edge. The next state is specified

state <= next ; -- by the state machine above.

end if ;

end process ;

Figure 7: The General Form of a VHDL state machine

In Figure 7, an outline state machine is split into two processes. The decoder process decodes the current
state into a set of control line assignments and a next state assignment. Each state is represented by a separate
case in a large case statement. The state machine register process is a register, storing the state variable by
assigning state <= next on each clock edge.

Figure 7 also shows an example of a branch within the state machine. In state “0001”, an if statement
examines some input and branches to different states according to that input. As can be seen, it is easy to put
conditions like this into a VHDL state machine.

It’s also easy to give control lines default values. If a state in the case statement does not assign anything
to a particular control line, it takes a default value specified before the case statement began.

16

The use of a state machine like this in the control unit seems ideal. It is easy to assign control lines - it can
be done by name. It is also easy to do conditional branches.

Each state is numbered, so states cannot generally be added or removed without renumbering. And it is not
easy for the designer to remember which numbers apply to which states. One solution to this problem is to make
the state variable an enumerated type, so each state is referenced by name.

A modular control unit
A modular control unit will be required for this project. Every machine instruction is executed by one or more

state machine states. If all the instructions that require a particular state are never used, then that state will
never be reached, and it can be eliminated.

Essentially, support for each type of 68020 instruction can be thought of as a module. All of the modules
that are needed to support a particular set of instructions must be consolidated into one place: the control unit
state machine.

Once it has been determined which instructions are needed, the appropriate modules are brought together
by the generator. It is possible that some may depend on others, as some instructions may be similar enough
that they can share microcode states. In this case, the generator must detect this requirement and bring in the
additional modules that are required. The modules will then be written out in VHDL as a state machine, in
much the same form as seen earlier.

The source of the modules
If the control unit was non-modular, each instruction would be defined directly in the state machine case

statement. This could be done here, but it would have to be possible for the generator program to parse the
state machine case statement, break it down into modules somehow, and then generate it again minus the parts
that are not needed. But that would require the generator to be able to parse VHDL - to be able to differentiate
between states, and to pick out which states could follow a particular state (essential to satisfy the dependency
requirements).

This is actually quite a difficult problem. The generator’s parser has to be as powerful and as smart as the
VHDL parser used by XST. It’s not enough to just scan for each piece of VHDL matching “when "number"
=>” and assume that this indicates that a new state is starting. What if a particular state contained a case
statement, perhaps to select a control line output? Every when in this inner case statement would be read as a
new state. Detecting which states could follow a particular state is potentially even more difficult. It’s easy if,
in every case, the assignment takes a single form, such as “next state <= "number"”. But what if the designer
wished to write the assignment in some other way?

Fortunately there is no need to solve this problem. The generator can insist that the module descriptions it
reads are not pure VHDL - that complicated parts, such as the start of a new state or the setting of the next
state, are written in some other easily recognisable form. Of course, it is still a good idea to keep the other parts
as VHDL: doing so gives a lot of flexibility for control line assignments and conditional branches.

All of this makes it much easier to write a generator. Now the generator’s job is to produce the state machine
VHDL by very simplistic translation of some module descriptions. The job is no longer to interpret some VHDL,
work out what the modules are, and then produce the VHDL for those modules.

It was decided that module descriptions would be placed in a series of “state machine” files. These files
would be pseudo-VHDL; VHDL with three additional commands - as seen in Table 2. The state labels in the
generated VHDL are really numbers instead of names, but this is transparent to the module writer. It is easier
to use numbers for state labels, because then the next state can be (by default) the current state plus one. This
means that the writer does not have to LABEL every state and explicity JUMP from one state to another.

Note that JUMP may appear in an if or case statement because it translates to an assignment to the next
state signal. However, CLOCK may not. CLOCK basically translates to a new state label, with an appropriate
number. It cannot be put into an if because the generator would have to split the if across two states. This
would mean the VHDL would have to be parsed properly, and this is something that we wish to avoid. The
command is called CLOCK because it really means “wait for a clock edge”: every state transition happens on a
clock edge.

17

Table 2: Pseudo-VHDL for State Machine Module Files

Command Meaning
LABEL name Label the current state as name. States only need to be labelled if

they will be JUMPed to.
JUMP name The next state will be the state labelled with name.

CLOCK Indicates that one state has finished and a new one has begun.
VHDL contained between two CLOCK commands, or before the first
CLOCK command in a file, goes into a single state X. VHDL after
one CLOCK goes into state X plus one, and so on.

Advanced State Machines
Research into the 68020 instruction set indicated that the following operations are carried out by many different

instructions:

• Use the “Effective Address7” field of the current opcode to load an operand.

• Use the “Effective Address” field of the current opcode to store a result.

• Fetch an immediate value into a register.

These operations are quite complex. Obviously, handling them in more than one set of states is not a good
idea. In a software language, they would be handled by a subroutine of some sort. This would avoid cutting and
pasting the same code into each routine, which would be wasteful of program memory and would also be very
difficult to maintain.

A way to handle this is to do some operations, particularly the effective address ones, before instruction
execution begins. As these are common to many instructions, the instruction decoder might determine that
effective address decoding would be required. It would then run special effective address states before starting
instruction execution. This has some disadvantages. It would add some overhead to all instructions using an
effective address, even if they were only using a simple addressing mode such as Register Direct. More difficulty
is caused by the MOVE instruction, which has two effective address fields that must be decoded separately.

The 68020 designers appear to have used the above approach with a series of clever modifications to handle
all the special cases. Special cases are unpleasant things to have to handle, so alternative methods will be
considered.

The use of multiple state machines was investigated. A “sub-state machine” could provide the Effective
Address operations. It would take over from the main machine when called in some way. Unfortunately, this
introduces more problems. It is difficult to design a good way to describe this sort of multi-level state machine. It
is wasteful that every state machine has to have its own control hardware (state register, etc) and, in experiments,
it was found to be quite difficult to keep the machines synchronised.

But a better alternative exists. There is no reason why the state machine cannot use subroutines. Imagine
if the JUMP command featured in Table 2 was extended to include a stacking operation: a CALL and RETURN
command could be added. Then any state could call a subroutine, consisting of one or more states. When that
subroutine was finished, it would jump back to the return state, taken from the stack. For the (small) overhead
of some additional stack logic, a flexible system of subroutine calls will be available.

Very little logic would be needed to provide the stack, because subroutines are unlikely to be nested deeply in
the stack machine (it is not as if recursion is ever needed). Only a few stack registers would be needed. The stack
pointer register and increment/decrement hardware would also be tiny because of this. If the stack had space

7 This field is six bits wide and occupies the least significant bits in some opcodes. It specifies an addressing mode, which
indicates the location in memory (or a register) where one of the operands for the instruction can be found.

18

for 8 items, the stack pointer would be only 3 bits wide, and a 3 bit adder and register could be implemented
in as few as 3 FPGA cells. And it needn’t slow the system down: with careful design, all stack operations could
take place in the same time taken by a JUMP.

The use of a stack approach means that states that implement common tasks can be reused, and reused easily
without the need for handling special cases. There is no limit on the number of subroutines that may be used,
so any other common operation may also be moved into a subroutine to save space in the control unit. And the
fact that JUMP and LABEL are already required means that this is just an extension to an existing system.

State Machine Stack Requirements
The stack operations should complete in a minimal amount of time - stack operations shouldn’t waste a clock

cycle. The stack should support CALL and RETURN commands: one to call a new subroutine by label, another to
return from one. Table 3 specifies these new commands.

Table 3: Additional Commands for State Machine Module Files

Command Meaning
CALL name Call the state labelled as name, by putting a return point (the

implicit next state: the current state plus one) on the stack, then
jumping to the state labelled as name, and increment the stack
pointer.

RETURN Decrement the stack pointer register, and jump to the state on the
top of the stack.

Just as with JUMP, it should be possible to put CALL or RETURN in an if or case statement. This will make
them as flexible as JUMP is: use of a stack should not require any features to be taken away.

10.2. Instruction Decoder

In the modular instruction decoder, a few simplifying assumptions can be made. First, it can be assumed that all
the opcodes that may be executed are known by the generator. This assumption is central to the entire project:
since the processor is intended to be ideally tailored to the program, the program must be known in its entirety
before generation can begin.

Given this first assumption, we can assume that no illegal opcode ever reaches the decoder - obviously, an
illegal opcode would be picked up when the program was examined.

So the instruction decoder doesn’t need to fully decode each opcode, because it is known that the opcode
will be a member of a set of possible opcodes, taken from the program that will be executed. This set will be
obtained by the program scanner.

Research into the design of the modular instruction decoder began by looking at how a complete instruction
decoder would be implemented for the 68020.

68020 instruction decoder
The original 68020 instruction decoder fully decoded each opcode, so that any illegal opcode was always

detected. The 68020 designers used Karnaugh maps to find the minimal logical functions that decoded each
opcode bit pattern to a state value [Tredennick 1988]. The process was done by hand.

Here, the generation of the instruction decoder must be automatic. However, the use of VHDL means that
there is no need to attempt any minimisation of logical functions in the generator: the decoder can be written
entirely in high level VHDL.

An examination of the 68020 instruction set reveals that it is not always easy to identify an opcode. In a RISC
processor, instruction decoding is usually just a matter of examining about 4 bits in the opcode. Unfortunately

19

the same is not true in the 68020. The situation shown in Table 4 is very common. Table 4 shows all six possible
forms of the ADD instruction. All have very similar opcode formats, but the operations required are very different.
For example, form 1 sends the result to a data register, and form 2 sends the result to an address in memory8.

Table 4: ADD - A Difficult Decoding Problem

Opcode Function Size
1 1101 yyy 0SS EEEEEE Dy ← Dy + [EA] Any
2 1101 yyy 1SS EEEEEE [EA]← Dy + [EA] Any
3 1101 yyy 1SS 000xxx Dy ← Dy +Dx + Extend Any
4 1101 yyy 1SS 001xxx [Ay]← [−Ax]+[−Ay]+Extend Any
5 1101 yyy 011 EEEEEE [EA]← Ay + [EA] Word
6 1101 yyy 111 EEEEEE [EA]← Ay + [EA] DWord

In order to exploit redundancies in the opcode format, the 68020 designers have packed six operations into
one opcode form. Suppose an instruction decoder has determined, from the high nibble, that the opcode is one
of the above. It must now narrow it down to one operation by applying a series of rules.

• If bits 6 and 7 (numbering from 0 as the least significant) are 00, 01 or 10, then the opcode has a valid
size field (marked SS in Table 4). The operation could be 1, 2, 3 or 4:

– If bit 8 is zero, then the operation is 1.

– If bit 8 is one, the operation could be 2, 3 or 4:

∗ If bits 3 to 5 are all zero, the operation is 3.
∗ If bits 3 to 5 are 001, the operation is 4.
∗ If bits 3 to 5 are neither 001 or 000, the operation is 2.

• If bits 6 and 7 are 11, the opcode doesn’t have a valid size field. The operation could be 5 or 6.

– If bit 8 is zero, then the operation is 5.

– If bit 8 is one, then the operation is 6.

This type of opcode makes things more difficult for the designer of an instruction decoder. The type of the
instruction is not indicated by the same bits in every case. There are complicated rules for decoding.. some
instructions have simple rules (e.g. operation type 1), and others have very complicated rules involving the
checking of many parts of the bit pattern (e.g. operation 3).

The tests must be applied in parallel to obtain single cycle instruction decoding. An easy method for doing
this is used in the vm68k library. vm68k has a series of tables, with (together) 65536 entries - one entry for every
possible opcode (216 = 65536). The opcode itself is used as the index into the tables. The appropriate row of
the table contains a few pieces of information about how to execute the operation.

VHDL, however, provides a less wasteful solution. A series of if statements can be nested together to
determine which operation is needed. The code fragment in Figure 8 is an example.

The VHDL above will be minimised by XST into logical functions that translate the instruction register bits
into the instruction decoder output. This seems an ideal way to solve the problem of decoding: all the opcodes
that are special cases can be handled by code like this.

Unfortunately, this is not the best solution for this project for one simple reason: it cannot be used to make
a modular instruction decoder; one tailored to a particular program, and supporting only the instructions used

8 Note: The bitfield marked yyy or xxx is a 3 bit register number. The bitfield marked SS is the 2 bit operation size
(byte, word or double word), and the bitfield marked EEEEEE is the effective address field.

20

-- Examine most significant nibble

case instruction_register (15 downto 12) is

...

when "1101" => -- This is one of the ADD operations, but which one?

if (instruction_register (7 downto 6) /= "11")

then

if (instruction_register (8) = ’1’)

then

instruction_decoder_output <= ADD_TYPE_1 ;

else

case instruction_register (5 downto 3) is

when "000" => instruction_decoder_output <= ADD_TYPE_3 ;

when "001" => instruction_decoder_output <= ADD_TYPE_4 ;

when others => instruction_decoder_output <= ADD_TYPE_2 ;

end case ;

Figure 8: Part of a VHDL instruction decoder

by that program. How can unnecessary if statements be removed when a particular program will never need
those decisions to be made?

It may, for example, be known that although the ADD instruction is present in the program, it is only present
in the first form shown in Table 4. So only the most significant nibble needs to be examined to determine that
it is an ADD of type 1.

Optimised instruction decoder requirements
The instruction decoder must be generated so that it is able to decode only the instructions that will actually

be used, and no more.
Any method of solving this problem would require the decoding instructions for each type of opcode to

appear in some sort of database. The instruction decoder generator would take the decoding instructions for
every required opcode from the database and put them together into a minimal decoder. It would do this by
looking at the difference between the opcodes.

This “opcode database” would specify (in some machine-readable way) all the bit patterns that could make
up a particular instruction. It would need to specify the difference between the six different operation types for
ADD (and any other opcodes where this pattern occurs) so that an appropriate sequence of states could be used
for each.

10.3. Arithmetic and Logic Unit (ALU)

The project’s ALU must provide the same features as the real 68020 ALU: features common to all ALUs. It will
be possible to leave some of these out, and therefore it will be modular.

The program will be examined to determine which ALU operations will be required. Add will always be
needed, because internal operations such as incrementing the program counter depend it. The logical operations
may not always be required, and this may allow the amount of logic required to be reduced.

10.4. Register File

The register file must provide eight data registers and eight address registers. All must be 32 bits wide: a double
word. However, it must be possible to update only the least significant word of either set of registers, and also
possible to update only the least significant byte of the data registers to support byte and word length operations.

Examination of the 68020 instruction set indicates that it is never necessary to read from more than two of
these registers at once. This would only be needed if it was possible to have more than one instruction executing
at once, with a pipeline, and this is a feature that is being left out for simplicity. So the register file must have
two outputs. Similarly, the register file only needs one input, as only one register is updated at a time.

21

10.5. Memory implementation

The processor required memory before it could be shown to work: a ROM was required to contain the program
being executed, RAM to hold the program’s stack and global data, and hardware to manage the memory map.
None of these are actually part of the processor, but they are essential if the processor is to actually execute
anything. Each of these components is discussed in turn in this section.

A note about memory accesses
The 68020 is a full 32 bit processor, which means that it has a 32 bit data bus. It can therefore fetch 32 bits

from RAM simultaneously, taking only one bus cycle to load a register from memory.
This might suggest that it would be most convenient to organise the memory, like the 68020 does, as 32 bit

words. Then fetches and stores could be done in one clock cycle (there is no bus, so memory access is done
directly).

Unfortunately, this fails to take into account two problems. The first problem is that of unaligned memory
accesses. The 68020 is a byte-addressed processor - addresses can legally point to any address in memory.
However, the memory is not byte-addressed, and this can be a problem.

Suppose, for example, that a program wishes to read two 32 bit words from RAM, at addresses 0x1000 and
0x1005. The first access is no problem, but the second is an unaligned access. Because the memory is organised
as a number of 32 bit words, the addresses of each word are all on 32 bit boundaries: 0, 4, 8, 12, 16, and so on.
0x1000 is on a 32 bit boundary, so it addresses one complete 32 bit word. 0x1005 is not on a 32 bit boundary:
it addresses 24 bits from one 32 bit word at 0x1004, and 8 bits from another at 0x1008. Both words must be
fetched, and the processor must use the correct bits from each to get the word that was wanted. Clearly, this
requires an extra fetch and extra logic to handle this situation. A similar problem occurs when writing to an
unaligned address.

The solution often employed to solve this problem is to make the whole processor only work with aligned
addresses. This is done in the RISC PowerPC processor. But the 68020 clone cannot simply throw an exception
if an unaligned access is attempted. This would put a huge restriction on the type of code that could be executed.

Fortunately, there is a simple solution to this problem: make the memory byte-addressable. If the memory is
organised as bytes, there are no restrictions on alignment and there is no need for special techniques to be used
to get around the alignment problem. This is slower, because fetching a 32 bit word will now take 4 fetches.
However, the ease of implementation is a great advantage: it saves a lot of design effort, a lot of testing, and
more space is available on the FPGA since the memory access hardware is simple.

How should the ROM be implemented?
In VHDL, ROM is implemented as a large table. Like real ROM, the table translates an address into the data

at that address. An example is shown in Figure 9.

case address is

...

when "1100100" => data <= "11111111" ; -- ff

when "1100101" => data <= "11111100" ; -- fc

when "1100110" => data <= "01000010" ; -- 42

when "1100111" => data <= "10101110" ; -- ae

...

Figure 9: Part of a VHDL ROM

This table could be built by entering the ROM data by hand - looking at a dump of the program binary. But
this is clearly ridiculous for programs of any size: even a tiny 100 byte program would take a long time to enter.

The alternative is to write a program to generate a ROM table. Since it has already been decided to write
a program to read Intel Hex binaries (in Section 8.2), the ROM generator can read a binary in this format and
produce a VHDL entity from it. The entity will translate an address into the data at that address, using a VHDL
table. It is trivial to implement this code, since an Intel Hex reader is already needed for the vm68k emulator.

22

Please note that, although the ROM will be generated by a program, this program should be separate from
the program that generates the rest of the processor. We do not want the user of the processor to be forced
to use this particular ROM: we want the user to be able to choose a ROM to suit the application. Although
it would be possible to make the generator program also produce the ROM (after all, it must scan the 68020
program, so it could generate a ROM while it did that), this would force the use of this particular ROM on the
user of the processor. So the ROM is assumed to be generated independently of the other parts of the processor.

How should the RAM be implemented?
The designer is faced with another choice when deciding how RAM should be implemented. The memory map

discussed earlier decided that 4Kbytes of RAM would be more than enough. So the choice is only where this
memory should be located.

Here, the real choice is between the use of the FPGA’s on board block RAM (as used for the register file)
and an off chip SRAM module. This is because the designer cannot really hope to implement the RAM as 4096
8 bit registers on the FPGA - the amount of logic needed would be a complete waste of FPGA space.

The BurchEd FPGA board comes with an SRAM module that can be attached, and provides 512 Kbytes of
memory. With a 15ns access time, it will be quite possible to access the SRAM at the speed of the FPGA - but
the fact remains that VHDL will still have to be written to drive it.

There is enough block RAM on the FPGA to provide the space required. The XC2S300E FPGA has a total
of 64 kbits of block RAM, organised into 16 blocks, according to [Xilinx 2002]. 4Kbytes will take up space in
eight of these blocks, as each block will hold 4Kbits of data, or 512 bytes. It is easy to write VHDL that uses
the Block RAM: the manual provides an example.

It was decided that the RAM should use the FPGA’s on board block RAM, because this is much simpler.
There is no need to produce a driver for the off chip SRAM.

Memory Mapper design
The memory mapper should implement the memory map seen in Table 1 on Page 12. The design can be quite

simple, since a single nibble of the address (bits 12 to 15) selects the type of memory being accessed. If this
nibble is zero, the access is directed to ROM. If it is one, the access is directed to RAM. And if it is eight, the
access is directed to the output device.

10.6. Debugging Hardware

It is very important to have some sort of system in place for making sure that the processor executes code as
expected, and to allow faults to be found. The system should allow the tester to verify all aspects of the operation
of the processor at the lowest level.

It is possible to verify that the processor works by giving it a test program that outputs a known result to
the output display (as mentioned in the memory map). If the result appears, the test passed. This is fine if the
processor works correctly, but it can only indicate when something is wrong and the tester is then left guessing
about the problem. A more comprehensive debugging system is required.

To design a useful debugging system, the features of a typical software debugger were examined. Software
debuggers have a number of very useful features, including:

• Display contents of variables and registers

• Single step at the machine instruction level

• Single step at the source code level (line by line)

• Run (at full speed) until a breakpoint is reached

But what is required is actually a hardware debugger. Some logic is needed that can provide some sort of
debugging display, capable of displaying many different aspects of the processor’s operation, and also provide
some way to slow down or stop the processor so that its changing internal state can be watched properly.

23

The design inspiration for this part of the work is the PDP-11 console: a set of lights and switches on the
front of the processor. The lights displayed an address register and a data register. The switches allowed the
PDP-11 to be halted, single stepped through instructions or bus cycles, and also allowed memory to be examined.
Figure 10 illustrates the console.

Figure 10: DEC PDP-11/40 console

Figure 11: Three BurchEd Add-on Boards. From left to right: 16 LED board, 16 switch board, and a
dual seven segment display board which can display two hexadecimal digits

The BurchEd FPGA board provides several add-on boards which could be useful for building some kind of
debugging hardware. Figure 11 illustrates these.

As on the PDP-11, the debugging hardware should be driven by the switches. These will allow the tester
to interact with the debugger, examine registers and memory, and stop the processor. Once stopped, it should
be possible to advance the processor by one clock cycle: from the processor’s perspective, no unit of time is
shorter than a clock cycle. So, at this level, the most information about the processor’s internal operations will
be available. And by stepping through several clock cycles, it will be possible to step through the instructions
as well. Stepping should take place when a button or switch is pressed.

The debugging hardware should allow examination of as many internal registers as possible, without intru-
sively affecting the design decisions. For example, it wouldn’t be easy to allow the debugger to modify any
registers. Doing this would involve substantial additions to the architecture: another multiplexer on every input
to every register.

The hardware should also allow examination of some memory addresses. There is no need to allow all possible
memory addresses to be examined - this would require 32 switches for all the address bits - so some subset will
have to be decided upon.

It is important that the debugging hardware should be an optional module. By its nature, it is not an
essential part of the processor, and it should be easy to leave it out.

10.7. Output Device

The memory map (see Table 1 on Page 12) makes reference to an output device. The output device allows a
single byte of output to be displayed, thus allowing a program to produce a sequence of results.

Since the debugging hardware discussed in the previous section will use a display, it makes sense to share the
display between the output device and the debugging hardware. Perhaps in one of the debugger’s display modes,
it could show the last value written to the output device at 0x8000. This would allow the program’s output to
be monitored, but also allow the processor to be debugged if the correct output failed to appear.

24

11. The Generator

In Section 9, the processor features that could be modularised were discussed. It was suggested that all of the
modular features could be provided by the automatic generation of parts of the VHDL for the processor. This
would make it easy to eliminate useless states from the control unit, useless decoding logic in the instruction
decoder, and would help to optimise the ALU. It would also allow the address register width to be set, and
unused addressing modes to be eliminated.

The automatic generation of the components will be directed at one or more files. Only a minimal amount
of VHDL should be generated so that the user never needs to modify the generator or output files.

11.1. How should VHDL files be generated?

There are two ways to handle automatic generation. One is to have the generator program produce VHDL
entities to represent each modular component. Not all parts are generated - some are hand written and are
placed in entities that make use of the automatically generated parts. Figure 12 illustrates this approach. It
shows the VHDL entities that would make up the processor. The surrounding “core” entity contains all the
others and ties them together by connecting signals between them. The shaded entities are the automatically
generated ones.

This approach helps the implementor to think about the separation between the components of the processor.
It is easier to understand how changes in one will affect another, so the chances of mistakes being made are
reduced.

debugging
entity

memory_map
entity

ALU mux
entity

register_file
entity

ALU control
entity

ROM entitystate machine
control entity

RAM entity

core entity

Handwritten entity Generated entity

decoder entity
instruction

segment entity
minimal ALU

entity
state machine

Figure 12: Multiple Entity Approach

An alternative approach is to put all VHDL in the same file. The automatic generator can “import” fixed,
hand written VHDL to tie the automatically produced parts together, so there is no need to spend a long time
writing extra entities to connect the parts. Figure 13 illustrates this approach.

The deciding factor that allows the second option to be chosen instead of the first is that the multiple entity
approach is actually harder work for the implementor, because extra VHDL has to be written to link the entities
together. And the easy to understand structure of the multiple entity approach can be preserved by allowing
multiple files to be imported into the automatically generated file, without the need to write extra linking
VHDL. The fact that all the generated VHDL goes into one file along with all the handwritten VHDL is of no
real importance, since from the implementor’s perspective, it all comes from well-separated files. Additionally, a
bare minimum of VHDL is generated by this approach.

So generation will produce a single VHDL file, after scanning a 68020 program to determine the optimal
configuration for the processor components. Parts of this file will be fixed at the implementation stage: these
parts will be imported from a series of VHDL files. Other parts will be automatically generated.

It makes a lot of sense to adopt a hierarchical structure here. A top level, hand written file will import other
fixed parts (to support the various processor components) but also indicate where the generator should generate
VHDL. This gives a good degree of flexibility - just by modifying the top level file or one of the ones it imports,

25

state machine
control entity

memory_map
entity

debugging
entity

ALU mux
entity

ALU control
entity

ROM entity

RAM entity

register_file
entity

core entity

decoder entity
instruction

segment entity
minimal ALU

state machine
entity

Figure 13: Imported Entity Approach

the internal structure of the processor can be easy modified by the user or tester to suit his or her requirements.
Importing can be done in a way that is analogous to the C preprocessor, with statements such as “INCLUDE file”
that are replaced in the output with the contents of the named file.

11.2. Generator Directives

If the generator is to produce the VHDL output file by the method described in the previous section, a number
of directives will be required. These are instructions to the generator to tell it what files to read and what to
generate.

The C preprocessor imports files by the #include directive. Similar directives are needed here. The form
of these directives is arbitrary, as long as they are easily recognisable by the implementor. Table 5 lists the
directives that were selected. (It is no coincidence that these are similar in form to the commands for the state
machine compiler: CLOCK, JUMP etc. These directives translate into valid VHDL just as those commands did.)

Table 5: Directives For Generator Input Files

Directive Meaning
INCLUDE file The directive is replaced in the output by the con-

tents of file
INSERT STATE MACHINE The control unit state machine is built and put

into the output file, replacing the directive.
INSERT INSTRUCTION DECODER The instruction decoder is built and put into the

output file.
INSERT OPTIMISATION op A piece of VHDL is inserted to optimise a partic-

ular operation op.

11.3. Design of a 68020 program scanner

The program scanner must find every opcode that is used in a 68020 program binary, so that it is known which
instructions, addressing modes, and ALU operations are required. It is an essential part of the generator.

The only way to approach this problem is to scan through the file, examining all the opcodes that might be
executed. It might be thought that the problem could be solved by running the program, perhaps in the vm68k

26

emulator, and making a note of each opcode that was executed. But this is not possible: How would the scanner
ensure that every possible execution path was executed? A static approach must be taken.

This is still not an easy task. Not all of the program binary is code (data segments also appear in the binary).
And opcodes vary in length: some have immediate data following them. Luckily, a tool has already been written
to interpret binaries in this way - the disassembler.

The GCC disassembler, objdump, can take a binary and dump out all the opcodes used in it. It is smart
enough to only disassemble the program’s text segment, which will contain only 68020 instructions. The program
scanner will use the disassembler output to build the set of required opcodes. There is clearly no reason to attempt
to replicate the disassembler’s function, when the output can be used directly.

12. Designing state machine sequences for instruction execution

So far, it has been said that the control unit will guide the processor through the phases of fetching, decoding
and executing an instruction by producing a correct control line sequence. But how should these control line
sequences be designed?

Of course, the instruction execution must be compatible with the 68020 - a particular instruction must do
what the 68020 manual [Motorola 1985] states that it should. There is already a complete specification for each
instruction. And this specification must be translated into a series of state machine states, each with control line
assignments.

It will certainly help to define each series of states by “Register Transfers”. This is a sort of pseudocode: it isn’t
compiled or translated directly. Register transfers are often used to describe internal processor operations: they
are commonly shown in processor documentation and appear throughout [Motorola 1985] and [Hennessy 1996].
They are simply assignments to a register: PC ← PC + 2 (increment PC) is one example, and others appear in
Table 4. There can be any number of register transfers in a state, as long as the processor can allow them to
take place simultaneously.

These register transfers are actually implemented by setting one or more control lines. But by discussing the
transfer in this higher-level way, the operation that is actually taking place is much clearer.

The first stage in using register transfers to design the implementation of an instruction is to define the
transfers sequentially, as if each one took place in a separate state machine state. The next stage is to merge
these states together where possible, perhaps reordering the operations if this doesn’t break the overall effect,
so that the instruction is implemented in a minimal number of states. Finally, the register transfers can be
translated into control line assignments and written out in VHDL. These tasks are best done by hand.

Part IV.
Implementation Phase

13. Implementing the fixed parts of the processor

The fixed parts of the processor are those that are never changed by generation - they are entirely hand written.
It is a good idea to implement the fixed parts of the processor first. Then the names and types of the connections
between generated components and fixed ones are all decided upon when writing the generated parts, making
the task somewhat easier. The design of each fixed part will now be discussed.

The core VHDL file, which includes all of these parts and tells the generator where to include the generated
parts, is called input.vhd. Source code can be found in Section E.7, Page 82.

27

13.1. The Control Logic

It has been implied that the entire state machine would be generated. This cannot actually be the case. A stack
controller is needed: it is part of the state machine, but it is a fixed part. The state machine tells it what to
do, and it uses the stack to provide the required operation. It is a small, but very significant, part of the state
machine.

A State Machine Controller
After some experimentation, a state machine controller was designed and implemented. It provides both CALL

and RETURN stack operations, as well as a mechanism for JUMP. A state may use any of these operations, which
set the next state. If none are used, the next state is the current state plus one.

The controller works using three control lines. They are call requested, return requested and call -
state. Every pseudo-VHDL command (except CLOCK) is translated to a setting of these three lines, which are
zero by default. Table 6 shows the settings for each operation. As can be seen, call state is used to notify the
controller which state should be CALLed or JUMPed to.

Table 6: State Machine Controller Truth Table

call requested return requested Action Controller Operations
0 0 NONE state← state+ 1
0 1 RETURN stack pointer ← stack pointer − 1

state← stack[stack pointer]
1 0 CALL stack[stack pointer]← state+ 1

stack pointer ← stack pointer + 1
state← call state

1 1 JUMP state← call state

It’s essential that all of the operations take place within a clock cycle, because if they took longer than that,
some of the state machine’s time would be wasted by the controller. This is tricky to arrange, because it’s
difficult to change the stack pointer and, at the same time, load or unload data from the stack. The solution
turned out to be to do all the stacking operations on the opposite clock edge to state transitions. There are two
clock edges: positive-going and negative-going. The controller used the negative-going clock edge to update the
state variable and stack pointer, but stack store and load operations were done on the positive-going clock edge.

When a RETURN operation was requested, the state number to be returned to had already been fetched from
the stack on the previous positive-going clock edge. So the controller only needed to copy this data into state
and update the stack pointer on the negative-going clock edge.

When a CALL operation was requested, the stack pointer was updated along with state by the controller
on the negative-going clock edge. The storage of the old state value in the stack was deferred until the next
positive-going clock edge, by storing the old value in a special “value to be stacked” register and setting a
“write enable” flag for that clock cycle only. In this way, CALL and RETURN took just one clock cycle: the same
amount of time as the far simpler JUMP operation.

The state machine controller that was implemented has an 8-item stack, meaning it needs only a 3 bit stack
pointer. Stack overflow will not be detected as there is no hardware to do this. Fortunately, it is possible for the
debugging hardware to monitor the stack pointer.

The state machine controller has support for a reset button. If a reset line is set, the stack pointer and
current state are reset to zero, thus starting the processor again. This reset line is connected to the debugging
hardware: a particular switch setting caused a reset.
⇒ The source code of state machine controller.vhd can be found in Section E.12, Page 89

28

13.2. The ALU

It is quite easy to build a 68020 compatible ALU in VHDL. It can be done using discrete logic - perhaps based on
an ALU design taken from one of many textbooks describing such things. But a better way is to use a design that
can be recognised by XST as being part of an ALU. XST can then use an optimised implementation, minimising
FPGA usage and maximising speed.

segment
n −bit ALU

(n) (n)

(n)

Carry InCarry Out

Output

Input A Input BControl

Figure 14: An ALU segment for n bits of data

The ALU design used here was inspired by a design seen in T80 [Wallner 2002], a soft processor written in
VHDL that is a clone of the Z80 microprocessor. The Z80 ALU is only 8 bits wide, but it is otherwise very
similar to the 68020 ALU. The T80 design features a procedure, AddSub, that will either add or subtract a set
of n bits. The procedure provides an ALU “segment”. Figure 14 illustrates one ALU segment in diagrammatic
form. Several segments are chained together, as seen in Figure 15, allowing the ALU to obtain the Carry and
Overflow outputs generated by the operation. This design is recognised by XST and made into an optimised
implementation.

segment
1−bit ALU

segment
31−bit ALU

Control

CarryTo Carry Flag

To Overflow

To Negative Flag

To Zero Flag

Output

(31)

(32)

(32)
Input A

Input B

Carry Input

(32)

Figure 15: A 32 bit ALU

The typical ALU has four flag outputs in addition to the result output. The four flags are traditionally
named Carry, Overflow, Negative, and Zero (shortened to CVNZ). They refer to the result of the operation and
are self-explanatory.

The Negative and Zero flags are easily generated. The Carry flag is simply connected to the carry output of
the ALU segment that deals with the most significant bits. The Overflow flag is rather more complicated. It is
the exclusive-OR of the carry outputs from the two most significant bits, so it is ‘1’ if these carry flags differ9.

The ALU will support all typical ALU operations: Add, AND, EOR, OR, and subtract. Because the designer
wishes to minimise the number of data links running to the ALU from the registers, it is also a good idea to
provide a reversed subtraction operation. All the other operations are commutative: A + B = B + A. Subtraction,
however, is not commutative, so the only ways to provide both A - B and B - A are to arrange for both B and

9 Because, if both are the same, then they are either both zero or both one. If both are zero, then the operation cannot
have overflowed - because the carry out is zero. If both are one, then the carry out was not caused by the 31st bit, it
was caused by some earlier bit. So the carry was not caused by an overflow - it is a borrow caused by a subtraction.

29

A to run to each input of the ALU, or provide a reversed subtraction operation. The reversed subtraction is
believed to be preferable since it appears that XST is able to provide this feature in the optimised ALU logic it
is able to generate.

The 68020 is able to do arithmetic operations on byte, word and double word types. This complicates the
ALU design slightly: one might think that all three types could be treated as the same due to the properties
of 2’s complement arithmetic. Unfortunately, the fact that the ALU must provide four flag outputs means that
this is impossible. It is essential that the ALU gets the flag information from only the first 8 bits for a byte
operation, and only the first 16 bits for a word operation.

The alu segment entity
The ALU that was implemented is based on a VHDL entity, alu segment. It provides all the operations that

the 68020 might require, including reversed subtraction. It operates on a variable number of bits that is set by
a generic parameter.

The operation is quite simple. If a logical operation is required, it is applied directly. Otherwise, an addition
is applied to the inputs. If a subtraction is required, the 1’s complement of one input (A or B, depending on
whether this is a normal or reversed subtraction) is obtained by using a logical NOT of that input. This becomes
a 2’s complement because the carry input is expected to be inverted by the VHDL that contains the segment.

The ALU segment’s use of existing VHDL primitives for all its operations means that XST is able to recognise
it as an Adder/Subtracter with Carry Output. XST is able to use an optimised implementation of it on the
FPGA, taking a minimal amount of space.
⇒ The source code of alu segment.vhd can be found in Section E.3, Page 78

The container
The containing VHDL used six alu segment entities. Figure 16 shows the final design of the ALU. Note that

when a word-length operation takes place, the byte-length segments are still used (along with the byte-length
flag generator), and when a double-word length operation takes place, the word-length segments are still used.
This minimises the size of the logic required: it would be pointless to have three separate ALUs for handling
each operation size, although that would be another way to approach the problem. The figure shows that three
sets of flags are produced - one for each data type - but only one output. For byte or word operations, only the
low 8 or 16 bits of the output are valid.

The Carry Input Generator shown sets the carry input to zero for add operations and to one for subtract
operations (to obtain a 2’s complement of the input). It outputs the reverse in only one situation: when the
Extend flag must be taken into account. The 68020 has two operations (ADDX and SUBX) that use Extend as a
carry input.
⇒ The source code of alu.vhd can be found in Section E.1, Page 73

Modularising the ALU segment
Unfortunately, one side effect of putting the ALU segment into a separate entity is that the internals cannot

be generated automatically. This might appear to make it impossible to make the ALU segment modular, and
remove the operations that are not needed in a particular program. But this is not the case. An alternative way
to remove certain ALU features is to tell XST that the control lines cannot take particular values. This allows
the ALU to be modularised easily, without worrying about how to correctly generate each segment.

It was noticed that, if there is no assignment of a value “X” to a particular control line, then any logic that
is enabled only by “X” will not be synthesised. So if the control lines to the ALU can never request an EOR
operation, then the EOR hardware will not be synthesised by XST.

But it is not really feasible to eliminate all assignments of the ALU control lines to EOR. This would require
the input VHDL to be parsed by the generator. However, there is an alternative. An easy way to ensure that a
control line never takes a particular value is to create a VHDL function that makes assignments to that control
line and restricts the value appropriately. This automatically generated “optimisation function” is described in
Section 15.3.

30

se
gm

en
t

1−
bi

t
A

L
U

se
gm

en
t

7−
bi

t A
L

U
se

gm
en

t
1−

bi
t A

L
U

se
gm

en
t

7−
bi

t A
L

U
se

gm
en

t
1−

bi
t A

L
U

se
gm

en
t

15
−

bi
t A

L
U

(3
2)

(3
2)

(1
5)

(1
)

(7
)

(1
)

(7
)

(3
2)

C
on

tr
ol

C
ar

ry
C

ar
ry

C
ar

ry
C

ar
ry

C
ar

ry

In
pu

t B
In

pu
t A

V
C

N
Z

V
C

N
Z

O
ut

pu
t

Fl
ag

s
fo

r
B

yt
e

O
pe

ra
tio

ns
Fl

ag
s

fo
r

D
ou

bl
e

W
or

d
O

pe
ra

tio
ns

V
C

N
Z

Fl
ag

s
fo

r
W

or
d

O
pe

ra
tio

ns

Carry In Generator

Figure 16: ALU Final Design

31

13.3. The Register File

There are two choices for the implementation. The file could be implemented as sixteen separate registers, each
implemented as a separate VHDL process. Then the outputs of all the registers could run to two 16 input
multiplexers to allow two registers to be selected.

Alternatively, the register file could be implemented using Block RAM. A small RAM, 32 bits wide by 16
rows deep, can provide all the functionality required. And all the hardware required to read and write data to
and from it is already present on the FPGA.

Advantages to the first approach are twofold. One advantage is that access is asynchronous: the control unit
can change which registers it is looking at without having to wait for a clock edge. This means that it is possible
to do some operation on one pair of registers and then do another on another pair without having to waste an
extra clock cycle to allow the second pair to be fetched. Another advantage is that registers are modular and
can easily be removed.

The synchronous block RAM does not have either property. But the block RAM approach has the great
advantage that it uses almost none of the configurable logic on the FPGA. No multiplexing hardware is needed
- it’s already part of the RAM. The data is stored in special-purpose memory, so no FPGA logic is used for
storage or access. In this case, there is no advantage in removing some registers: no FPGA space will be saved
by doing so.

Thus, this is a choice between a small implementation that is slower, and a large implementation that is
faster and has some potential for modularisation. It should be noted, though, that there are two optimisations
that can be made to speed up the block RAM implementation, resulting in very few wasted clock cycles.

The first optimisation is to store the data registers and the address registers in separate areas of block RAM,
so that a total of four registers can be accessed at a time: two address registers and two data registers. This
enables the second optimisation. Practically all 68000 instructions that access registers have the register numbers
that are wanted in two bit positions in the opcode: at bits 0 to 2 and at bits 9 to 11. By using these bit patterns
as address and data register numbers, and looking up their contents during the instruction fetch and decode
phases, practically all the registers that an instruction might want to use are available when it is executed.

Because of the above two optimisations, it is quite possible to use block RAM to provide the register file.
The potential for modularisation in the register file is not really that important, because very little space will be
saved on the FPGA through such modularisation. The block RAM doesn’t use much FPGA space anyway.

A sample piece of VHDL was found in the XST documentation that represents a dual-port RAM. A dual-port
RAM allows read access to two locations in memory simultaneously, and write access to one of those locations,
which is what is required as a minimum for the register file. A VHDL entity was written to provide reusable
dual-port RAM functionality, based on the XST sample. It provides RAM of a variable size: the address width
and data width can both be set by generic parameters.
⇒ The source code of xilinx dp ram.vhd can be found in Section E.14, Page 90

The entity was used to provide two separate register files: one for eight data registers and another for eight
address registers.
⇒ The source code of register file.vhd can be found in Section E.10, Page 86

13.4. The Memory Subsystem and Output Device

As discussed earlier, the memory subsystem is not really part of the processor, but it is essential for testing it. It
(minimally) consists of a RAM (for global variables and the program stack), and a ROM (to hold the program
binary). In this case, an output device capable of displaying a number is also included to help with testing. A
memory mapper is also required, since there will be more than one memory device. The memory mapper needs
to divide up the memory space as shown in Table 1 on Page 12.

Memory Mapper Implementation
The difficulty in building the memory mapper comes only from the fact that it must route data in two directions.

32

It must be able to send data to the appropriate type of memory, but also retrieve memory from it. Figure 17 is
a diagram of its function.

ADDR

IN

OUT

0

a
b

c

 DEC

16 bit Address Input

Data Output

Data Input

Write Enable

Output Dev

4Kb ROM

4Kb RAM

ADDR

OUT

IN

WRITE ENABLE

WRITE ENABLE

(32)

(32)

Figure 17: The memory mapper

Only the least significant 16 bits of the address are used. They are split into two parts. The high nibble is
sent, via the lines labelled “a”, to the output multiplexer and a decoder (labelled “DEC”). The output multiplexer
selects a memory data source based on the value of the high nibble. If the nibble is zero, ROM is selected, and if
it is one, RAM is selected. Otherwise, the output is zero, because an access to non-existent memory (or a read
from the output device) has been attempted. The decoder is used for writing to memory. If the Write Enable
input is on, then one of the control lines (labelled “c”) will be switched on. This tells the device on the control
line that the data on the input should be written to memory (which is why no control line runs to the ROM).
The line that will be switched on is chosen by the high nibble of the address: the line to RAM is selected by a
one in that nibble, and so on. By this method, the appropriate memory device is accessed for read and write.
The low part of the address goes to both the ROM and RAM, where it indexes the correct location within the
4k block.

The design seen here is analogous to one commonly used in a real computer. Normally, however, all devices
would sit on a bus and the decoder would enable them for reading or writing as needed. This requires fewer data
lines (the same ones can be used for reading and writing) and no multiplexer is required. However, it requires
each device to have bus-driving logic, and this is something that is avoided here.

RAM implementation
The RAM was very easy to implement thanks to the fact that a dual-port RAM entity had already been built

for the register file. The data width of the RAM was one byte, and the total size was 4096 bytes, as discussed
earlier. One of the two read ports, and the write port, were connected to the memory mapper to allow the
program to use the RAM. The second read port was connected to the debugging hardware to allow it to inspect
some RAM locations.

ROM implementation
In Section 10.5, it was determined that the ROM would be best implemented by having a program generate

a ROM entity from a program binary in Intel Hex format.
A simple C++ program, romfactory, was written. It reads an Intel Hex binary using a C++ class,

ProgramRAM. ProgramRAM subclasses the vm68k memory class: meaning that it provides an interface that vm68k

33

can use as memory - it has various functions for loading and storing information. A regular RAM would be ini-
tialised to zero, or left uninitialised, when constructed, but ProgramRAM reads an Intel Hex binary and initialises
the memory space from that. So vm68k is able to use it to execute the program.

Although ProgramRAM was really written as part of the driver for vm68k that allows 68020 programs to be
tested, it can be easily reused by romfactory to read the program binary.

Output Device implementation
The output device was implemented by creating a byte-width register, last output. This register is updated

whenever a program writes to memory location 0x8000. The number that was last written to this register can
be seen in one of the modes of the debugging hardware, discussed later.

VHDL source
⇒ The source code of memory.vhd can be found in Section E.8, Page 83

Note that both the decoder and multiplexer functions are carried out by the same process, memory map -
process. For convenience, the process also handles loading the output data into the output device register.

13.5. Debugging Hardware Implementation

It was decided in Section 10.6 that the debugging hardware would allow the user to monitor internal processor
registers, inspect some RAM contents, and run the processor in a single-step mode. Clearly, in order to do this,
it must be able to interact with the user. The debugging hardware should also not be an essential part of the
processor, but this will be dealt with later.

The user interface components available are illustrated in Figure 11 on Page 24: a dual seven segment LED
display, a row of 16 switches and a row of 16 LEDs. Additionally, the FPGA board has a single push button on
it. The 16 LEDs are not particularly useful: it is hard to read the value of a register from those, as it must be
expressed in binary. The seven segment displays are far more useful: here, the data is read as a number, which
is far easier for a person. (New input or output devices could be built and interfaced to the FPGA if necessary,
but there is no call for that here).

So the button and switches can be used as an input, and the seven segment displays can be used as an output.
Two dual seven segment display boards were available: when connected side-by-side to the FPGA, they allow a
16 bit number to be shown.

It was decided that some of the switches would control the processor’s speed (the debugger has to be able to
single step the processor) and some others would control what data appeared on the display. The display would
not be particularly useful if it always displayed the same information - the contents of one register, for example -
because this is very inflexible. The solution to this is to connect the display to the output of a multiplexer, and
connect various data sources to the inputs. The multiplexer would be controlled by some of the switches.

Debugging Output
Ideally, the user would want to be able to inspect any piece of information relevant to the processor. Unfor-

tunately, there can only be a limited amount of information available at any one time, for two reasons. Firstly,
only two of the data and address registers can be read at once, because of the use of block RAM to represent
these registers. Secondly, every data source that is available for inspection adds to the amount of logic that must
be synthesised because the data must be routed to the display.

So some compromise has to be reached: the most useful information has to be available to the user. It was
decided to include the following types of information:

• As much information as possible about the contents of the register file.

• All internal processor registers - PC, IR, etc. except for the memory access registers (MAR etc).

• The ALU flags: Carry, Overflow, etc.

34

• The first 16 bytes of the RAM: 0x1000 to 0x100f.

• The last byte written to the output device (0x8000)

• The current state number and stack pointer in the control unit state machine.

A maximal set of registers are made available to the tester. Unfortunately, since the display can only show
16 bit values, only the low 16 bits are available in most cases. This shortcoming is not such a serious problem
as even looking at only the low 16 bits will still provide a lot of information to the tester. In the case of the PC
register, the range is only from 0x0000 to 0x0fff anyway - only 12 bits are needed.

It will certainly be useful to inspect the workings of the state machine - indeed, most processor problems are
likely to be caused by bugs in the control line settings, due to the complexity of this part.

It was found that only 16 inputs to the multiplexer were needed to provide all of the above debugging outputs.
The output that was wanted could therefore be selected by a four-bit binary number, or four switches. A fifth
switch could select between inspecting a regular debugging output (a register, etc) and inspecting RAM. This
is why only 16 RAM locations can be viewed: four switches were readily available to select the address. Of
course, there were many more switches available on the switch board, but only five of them were needed for the
debugging output - it would have been less convenient to use additional switches.

Testers of the processor should arrange to store variables in this space if they are to be viewed. Fortunately,
this is where global variables will be placed automatically by the C compiler.

Table 7 contains a list of the possible debugging outputs along with their switch settings. The purpose of
some of the registers in this table has not yet been discussed - they will be talked about in later sections. The
source of the debugging multiplexer can be found in debugging.vhd.
⇒ The source code of debugging.vhd can be found in Section E.5, Page 80

As stated earlier, two dual seven segment LED displays were chosen as the output device. The LED display
does need a small amount of controlling logic, to translate a byte into a number for each display. This function
is provided by a simple ROM. Each nibble is translated into seven outputs: one for each segment of the display.
A VHDL entity, seven segment driver, provides this functionality for each display.
⇒ The source code of seven segment driver.vhd can be found in Section E.11, Page 88

Single-stepping support
A button is available on the FPGA board, which seems an ideal way of stepping the processor: press the

button, and the processor advances to the next clock edge. Since everything happens within the processor on a
clock edge, there is no higher resolution than this for watching the processor’s operations.

However, it is not particularly useful if the processor can only operate when stepped. Since a typical instruc-
tion may take four or five clock cycles, and some may take many more, it isn’t practical to run an entire program
in this fashion. So the processor must also support a “full-speed” mode, in which it runs at the speed of the
FPGA’s clock (a phase-locked loop controlled clock that can run at any speed from 1 to 100 MHz).

To support these modes of operation, two more switches were allocated to change the mode, as seen in Table
8. Note that it is possible to get from the reset state into either mode by moving only one switch: this is
deliberate.

A substantial amount of VHDL was needed to support these features. The first part that was required was
a debouncer for the button. When the button is pressed or released, the contacts within it will bounce slightly.
This will often result in a number of “false presses” being recorded by the logic connected to the button. With the
type of button available here, there are only two ways to avoid the problem, both involving special logic circuits.
One way is to poll the button’s state at a particular interval (for example, every 100 milliseconds). When a state
change is detected, the button must have been pressed or released. Unfortunately, it’s quite possible that the
button may be polled while it is bouncing, in which case a false state change will still be detected. A better way
is to start a counter when a state change is detected. Until the counter reaches a certain point, no further state
changes will be considered. Thus, bounces are ignored. If the counter’s count-up-to value is chosen correctly, the
bounce problem is eliminated entirely.

35

Table 7: Debugging Outputs

Switch Setting Display
00000 OA: operand address (low 16 bits)
00001 OV : operand value (low 16 bits)
00010 PC: pc register (low 16 bits)
00011 IR: instruction register

00100 Ax: address register file output X (low 16 bits)
00101 Dx: data register file output X (low 16 bits)
00110 Ay15..0: address register file output Y (low 16 bits)
00111 Ay31..16: address register file output Y (high 16 bits)
01000 Dy15..0: data register file output Y (low 16 bits)
01001 Dy31..16: data register file output Y (high 16 bits)
01010 IDR15..0: immediate data reg (low 16 bits)
01011 IDR31..16: immediate data reg (high 16 bits)
01100 state: control unit current state variable
01101 call stack at ptr minus one: the item on the top of the

state machine stack
01110 Low byte contains call stack pointer: the state machine

stack pointer. High byte contains the ALU condition codes.
01111 Low byte contains last output: the last byte to be written

to the output device. High byte contains a bitfield composed
of various internal flags.

1XXXX RAM: the byte at address 0x100X.

The debouncer is in the button debouncer process. It consists of an up counter that counts from 0 to 0x8000
when the button is pressed or released. If the button stays stable for the time taken for this up count, then the
state change is considered to be valid, and the button clock event register is sent high until cleared by another
signal.

The VHDL source that manages the debouncer and button clock event is in clock.vhd.
⇒ The source code of clock.vhd can be found in Section E.4, Page 79

Removing debugging support
Debugging support can be removed from the processor by removing the processes that manage it. The clock

controller may be replaced by one line of VHDL: “clock <= fast clock ;”, which drives the processor at the
FPGA clock speed at all times. The debugging output multiplexer may be removed entirely.

14. Implementing control line sequences for 68020 instruction
execution

In Section 12, a method of implementing the 68020 instruction set was described. The instruction set is first
defined in terms of high level register transfers, with one transfer per clock cycle. If this cannot be done for every
instruction, then it is done for a representative set of instructions. These register transfers are high level in the
sense that, for example, if we wish to increment register D0 by 5, we can specify just D0 ← D0 + 5. There is no
need to worry that this will require the current value of D0 to be loaded and then the output of the ALU to be

36

Table 8: Processor Stepping Mode

Switch Setting Processor Speed
00 Not applicable - processor is reset
01 Pressing the button advances the processor to the next clock

edge (so pressing it twice advances the processor by one clock
cycle).

1X FPGA board speed

stored in D0. This only becomes important later.
From the high level register transfers, the implementor derives a minimal set of low level register transfers

that can be used to implement the high level ones. Every register transfer in this set adds to the complexity
of the logic that makes up the processor, because every one means an extra data link and an extra input to a
multiplexer. The aim is to make the processor as small as possible, not as fast as possible. So all data links must
be essential. None can be present purely to allow some register transfers to be parallelised when those transfers
could be done one after another, although if it is possible to parallelise two transfers for some other reason, this
should certainly be done.

Finally, from these register transfers, the implementor designs the VHDL required to implement the data
links they require. This VHDL doesn’t change - it is a fixed part of the processor - but it couldn’t be designed
in Section 13, because it can only be efficiently designed once the required register transfers are known.

14.1. Beginning to implement the 68020 instructions

Implementation began with a careful examination of the instruction set. The instructions were all chosen for a
reason, and there is a logical structure to the set: the 68020 designers didn’t want to make their task harder
than necessary. Understanding this structure makes implementation far easier.

It was soon noticed that many of the instructions are very similar. For instance, the ADD and SUB instruc-
tions are almost identical. The data comes from the same places in both, and the result goes to the same place.
The only difference is that ADD uses the ALU in “add” mode and SUB uses the ALU in “subtract” mode. What
this means is that ADD and SUB can share the same state machine sequence. The only thing that the state
machine must do to ensure correctness is to examine some bits in the instruction register to decide which ALU
operation to apply.

Whenever two or more instructions are similar enough that sharing a state sequence is possible, those in-
structions are said to belong to the same family. Only one set of states needs to be written for each family, so
finding as many families as possible is useful.

Table 9 lists the families of opcodes that appear on the 68020. These were found by looking at the instruction
set and trying to find instructions that are similar to each other. The first column indicates which bits of the
instruction register are used to distinguish between members of the family. The second column gives the opcodes
in the family. As can be seen, many instructions fit into one of the 68020 opcode families.

14.2. Defining the high level register transfers that are required

It would be a very costly exercise to work out which register transfers are needed to support all the 68020
instructions. Fortunately, there is no need to work out register transfers for more than one member of each family:
the operations are the same for every member of a family. Additionally, only a small number of instructions
need to be investigated before it becomes very likely that no more required register transfers will be found. After
all, the 68020 designers also wanted to avoid having too many different types of register transfer, for exactly the
same reasons as this project does.

37

Table 9: 68020 opcode families

IR bits List of family members
15-14 ABCD, ADDX, NBCD, SBCD, SUBX: Decimal and Binary arithmetic

operations using the Extend flag.
14-12 ADD, AND, EOR, OR, SUB: Arithmetic operations using data registers.

14 ADDA, SUBA: Arithmetic operations using address registers.
11-9 ADDI, ANDI, EORI, ORI, SUBI: Arithmetic operations using immediate

operands.
8 ADDQ, SUBQ: Arithmetic operations using very short immediate

operands.
10-9/4-3 ASL, ASR, LSL, LSR, ROL, ROR, ROXL, ROXR: Shift/rotate operations.

11-8 BCC, BCS, BEQ, BGE, BGT, BHI, BLE, BLS, BLT, BMI, BNE, BPL, BRA,

BVC, BVS: Conditional branch operations.
7-6 BCLR, BCHG, BSET, BTST: Bit test/set operations.
11-9 CLR, NEG, NEGX, NOT: Single-operand arithmetic and logical oper-

ations.
11-8 DBCC, DBCS, DBEQ, DBF, DBGE, DBGT, DBHI, DBLE, DBLS, DBLT,

DBMI, DBNE, DBPL, DBT, DBVC, DBVS: Decrement and branch on
condition instructions.

11-8 SCC, BDCS, SEQ, SF, SGE, SGT, SHI, SLE, SLS, SLT, SMI, SNE, SPL, ST,

SVC, SVS: Set according to condition: a byte is cleared or set ac-
cording to the specified condition.

11-8 TRAPCC, TRAPCS, TRAPEQ, TRAPF, TRAPGE, TRAPGT, TRAPHI,

TRAPLE, TRAPLS, TRAPLT, TRAPMI, TRAPNE, TRAPPL, TRAPT,

TRAPVC, TRAPVS: Trap on Condition. A TRAP is generated if
the condition is true.

To find the required register transfers, a set of opcodes were chosen. One opcode was chosen from each family
in Table 9, except those families which will not be implemented10. From the arithmetic operations, the subtract
operation was chosen. It is the only non-commutative operation: the only one where the order of the operands
affects the result. So if it works correctly, it is certain that the other commutative members of its family will
also work correctly.

Table 9 doesn’t cover all the instruction types that the processor may need to execute. So some control
operations were chosen: JMP, JSR, and RTS, along with some data transfer operations: MOVEQ, and MOVE.
The high-level register transfers to implement these operations and the ones chosen from Table 9 were written
down. They appear in Appendix C. For the moment, it is assumed that some way of loading and storing data at
an effective address has been worked out. It is also assumed that subroutines to “Decode DataSize” and “Fetch
Immediate Data” exist.

Having looked at these operations, which represent a cross-section of 68020 operations, the set of required
register transfers is known. It is very unlikely that any other operations might exist that would demand new
register transfers. It should be possible to define any others using a sequence of existing transfers.

The register transfers required were collated into Table 10. The same symbols used in Appendix C are used
here, with the one exception that the • mark is now used in place of an arithmetic or logical operation, to show
10In Section 7.2, features that would be left out of the processor were discussed. These features included decimal arithmetic

instructions (ABCD, SBCD, and NBCD), interrupts and traps (TRAPCC, etc.), and shifts (ASL, etc.). The bitfield
operations (BCLR, etc.) cannot be implemented without these features either, so they are left out too.

38

that every register transfer involving the ALU can be used with any operation. Readers should note that x and
y are the values of two 3 bit fields in the instruction register.

Table 10: Collated Register Transfers

Ax ← Ax •DataSize Ay ← Ay • 4
Ay ← Ay • Ax • ExtendF lag Ay ← Ay •DataSize
Ay ← Ay • [EA] Dx ← Dx • 1
Dy ← Dy •Dx • ExtendF lag Dy ← Dy • [EA]
Dy ← instruction register(7..0) PC ← EA
PC ← PC • IDR PC ← PC • instruction register(7..0)
PC ← [Ay] [Ay]← PC
[DestEA]← [SourceEA] [EA]← 0 • [EA]
[EA]← 0 [EA]← [EA] •Dy

[EA]← [EA] • IDR [EA]← [EA] • y
[EA]← 0xff

14.3. Thinking at a lower level

To date, the register transfers have been very high level descriptions of what is required. The descriptions have
been a mixture of pseudo-code and register transfers that are not always directly possible, but are possible only
through a series of operations. For example, consider [Ay]. This is shorthand for “the value stored in memory
at location Ay”. In order to get this value, the processor must fetch data from memory. This could take up to
four fetches if the operand is a double word, as it is for PC ← [Ay]. So this operation must involve a temporary
register to store [Ay] as it is loaded.

Of course, before implementation is possible, all of these complicated high level register transfers and pseudo-
code must become actual register transfers. In the next sections, ways to arrange this will be discussed.

Implementing effective address (EA) operations
Around half of the 68020 instructions have an effective address field. This field allows one of the instruction

operands to be specified in a very flexible way: it can be a data register, or a memory location specified in an
address register, and many more possibilities as defined by the 68020’s addressing modes. The effective address
field occupies the six least significant bits of the instruction word (with one exception11). The six bits consist of
a three bit Mode specifier, which indicates the addressing mode to be used, and a three bit Register specifier,
which gives a register to be used for the operation.

Typically, an operation will want to use the effective address for loading and storing data. Take, for example,
the ADD instruction, which is specified in the instruction set description in [Motorola 1985] as [EA]← Dy+[EA].
What this means is that the instruction should take the value specified by the effective address (EA), add it to a
particular data register (Dy) which will be specified in the instruction word, and store the result at the effective
address again. If the effective address is a data register, then the operation is very simply Dx ← Dy +Dx. But if
the effective address is a memory location, then the situation is more complicated. A whole series of operations
will be required:

• Decode the effective address to determine the absolute memory location it indicates. Store this address in
a register.

• Load the data at that address into a register. This is the current value of the operand.
11 The MOVE instruction has two effective address fields, one for the source, another for the destination. Fortunately, the

methods that handle one of these fields can be reused to handle both.

39

• Do the operation, updating the value.

• Store the updated value at the absolute memory location.

Two new registers are needed: one to store the absolute memory location that the effective address decodes to,
and another to store the value at that address. In this implementation, the former was called operand address
(OA), and the latter was called operand value (OV). These names were arbitrary. Although it is clear from
the description of the effective address system detailed in the manual that both must exist, the manual does not
say what the makers of the 68020 called them.

[EA], the label for an effective address value used in Table 10, can now be replaced with OV - the short name
for the operand value register. This means that OV is available on ALU Input A in place of [EA]. Similarly,
EA can be replaced with OA - the short name for the operand address register.

Since the effective address operations are needed for more than one instruction, it makes sense to put them
all in subroutines. Subroutines are needed to:

1. Decode an effective address into an absolute memory location, to be stored in operand address. Call this
one decode ea.

2. Load the data at the address specified in operand address into operand value. Call this one load op-
erand value. The register transfer operation done by this subroutine is OV ← [OA].

3. Store the data in operand value at the address specified in operand address. Call this one store oper-
and value. The register transfer operation done by this subroutine is [OA]← OV .

With these three subroutines defined, an instruction can use an effective address by calling decode ea, and
then load operand value. It then carries out the operation, using OV in place of [EA]. Finally, store oper-
and value can be called to write the data back, if it has been updated. The high level register transfers that
used [EA] directly can be translated to low level register transfers that can actually be implemented: ones that
obtain OV , use it, and write it back. Table 11 shows this translation for the ADD, SUB, OR, AND and EOR
instructions (the same sequence supports all members of this family, because the operation required is decoded
from the instruction word).

Table 11: Implementing High Level Register Transfers using Low Level Register Transfers (1)

High Level Low Level Sequence
Decode DataSize
if instruction register(8) = 0, then

Dy ← Dy • [EA]
else

[EA]← [EA] •Dy

Decode DataSize
CALL decode ea

CALL load operand value

Decode ALU operation
if instruction register(8) = 0, then

Dy ← Dy •OV
else

OV ← OV •Dy

CALL store operand value

New register transfers needed for the effective address decoding subroutine
The effective address decoding subroutine, decode ea, must determine a value for OA from the information

in the Mode field of the instruction word. Each of the 16 addressing modes that address memory calculate the
OA value differently.

40

The entire set was examined and evaluated at length, and it was found that certain modes would need
additional registers in order to be implemented. However, as discussed in Section 7.2, the modes requiring extra
hardware will be left out of the implementation.

So the only addressing modes that will be considered are those that can be implemented using the internal
registers that are already available. Table 12 shows all the 68020 addressing modes that will be supported, with
the low level register transfers that decode OA.

Table 12: Register transfers required to support 68020 addressing modes

Mode name EA field How OA is obtained
Data Register Direct 000 XXX OA is undefined, because no memory

access is involved here.
Address Register Direct 001 XXX OA is undefined, see above.
Address Register Indi-
rect

010 XXX OA← Ax

Address Register Indi-
rect with postincrement

011 XXX OA← Ax
Ax ← Ax +DataSize

Address Register Indi-
rect with predecrement

100 XXX Ax ← Ax −DataSize
OA← Ax

Address Register Indi-
rect with Displacement

101 XXX OA is loaded from memory address PC
OA← OA+ Ax

Address Register Indi-
rect with Index, Dis-
placement

110 XXX Omitted - requires extra hardware.

Memory Indirect
Pre/Post Indexed

110 XXX Omitted - requires extra hardware.

Absolute Short 111 000 OA is loaded from memory address PC
Absolute Long 111 001 OA is loaded from memory address PC
PC Indirect with Dis-
placement

111 010 OA is loaded from memory address
PC, then: OA← OA+ PC

PC Indirect with Index
and Displacement

111 011 Omitted - requires extra hardware.

PC Memory Indirect
Pre/Post Indexed

111 011 Omitted - requires extra hardware.

Immediate 111 100 OA← PC
PC ← PC +DataSize

As a side note, it was mentioned earlier that addressing mode support would be modularised. This is done
in the state machine sequence for decode ea, but not by removing or changing the code. It is done using two
optimisation functions. These functions are discussed in Section 15.3.

Using the OA and OV registers to implement the other operations
Whenever there is an operation which requires memory to be fetched or stored in memory, OA and OV can

be used along with load operand value and store operand value. Table 13 shows a translation of such an
operation from a high level register transfer (on the left) to a low level register transfer (on the right). All the
register transfers seen in this table have appeared before.

The PC ← OA operation needed for the JSR and JMP instructions can be implemented by routing OA
through the ALU: PC ← OA+ 0.

41

Table 13: Implementing High Level Register Transfers using Low Level Register Transfers (2)

High Level Low Level Sequence
PC ← [Ay]
(for RTS)

OA← Ay
CALL load operand value

PC ← OV
PC ← EA
(for JMP and JSR)

decode ea

PC ← OA
[Ay]← PC
(for JSR)

OA← Ay
OV ← PC
CALL store operand value

PC ← OA
[DestEA]← [SourceEA]
(for MOVE)

CALL decode ea for SourceEA
CALL load operand value

CALL decode ea for DestEA
CALL store operand value

[EA]← 0
(for SCC)

CALL decode ea

CALL store operand value

[EA]←0xff

(for SCC)
CALL decode ea

OV ←0xff

CALL store operand value

Register transfers needed to load and store operand values, and fetch immediate values
Table 14 shows the sequence of register transfers for load operand value, fetch immediate data and store -

operand value. To save space, the sequence is only shown for the store or fetch of a single word. OV15..8 indicates
that the fetch is taking place into bits 15 to 8 of OV - the most significant byte.

This is the first time it has been necessary to show which transfers happen in which clock cycles. When data
is fetched from memory, a request for it must be put in one clock cycle before the data must be available. So
MAR is programmed in the first clock cycle, and then the data is available in MDR in the second. The word
CLOCK indicates a state boundary where execution waits for a clock cycle, a convention introduced for the state
machine generator.

Choosing ALU data sources to support Register Transfers
Many of the transfers require the ALU. Data must be available from registers: Ax, Dx, Ay, Dy, OV , OA, PC,

IDR, and from y, instruction register(7..0), and DataSize, and also some miscellaneous immediate values: 0,
0xff, and 4. Multiplexers could be added to the ALU to allow any of these sources to be sent to either ALU
input, but this would be a waste of logic. It would be better to try to route each data source to only one of the
ALU inputs. This would minimise the size of each input multiplexer.

Because the ALU supports a “reverse subtract” operation, any register transfer of the form Out ← A • B
can always be replaced by Out← B •A, just by using the reversed subtraction operation instead of the regular
subtraction operation. This is very useful, because it means that it is only necessary to consider which two sources
must be available to the ALU for each operation: it isn’t necessary to consider which inputs those sources can
reach.

The problem of finding the minimal set of sources for each ALU input multiplexer is a graph colouring
problem12, with two colours: one for each ALU input. In the graph, the nodes are the data sources, and an
12 The graph colouring problem is solved when each node in the graph has been assigned a different colour to all of its

neighbours.

42

Table 14: Implementing load operand value, store operand value, and fetch immediate data

Subroutine Low Level Sequence
Load OV MAR← OA Prepare to fetch 1st byte of OV

OA← OA+ 1
CLOCK

OV15..8 ←MDR Store 1st byte of OV
MAR← OA Prepare to fetch 2nd
OA← OA+ 1
CLOCK

OV7..0 ←MDR Store 2nd byte
Store OV MAR← OA Set address for store of 1st byte

MDR← OV15..8 Set data for store of 1st byte
OA← OA+ 1
CLOCK

MAR← OA Set address for store of 2nd byte
MDR← OV7..0 Set data for store of 2nd byte
OA← OA− 1

Load IDR MAR← PC Prepare to fetch 1st byte of IDR
PC ← PC + 1
CLOCK

IDR15..8 ←MDR Store 1st byte of IDR
MAR← PC Prepare to fetch 2nd byte
if restore pc after immediate fetch then

PC ← PC − 1 Restore the PC to the original
value
else

PC ← PC + 1
CLOCK

IDR7..0 ←MDR Store 2nd byte

43

edge between two nodes indicates that those two sources are needed simultaneously. Once the graph has been
2-coloured, all sources of a particular colour will go to the same ALU input.

Figure 18 illustrates the (uncoloured) graph. Note that instruction register(7..0) is referred to here as
IR(7..0). Note also that a lot of the sources have been consolidated into one node, called PGI, which stands for
“processor generated immediate”. All the short immediate values (0, 0xff, 4, y, etc) can be represented by PGI,
because only one of them is needed at once. It also means that only one multiplexer input will be needed to allow
the ALU access to all of these short values. If 0, 0xff, 4 and y were all directly connected to the ALU input,
XST would generate a 32 bit multiplexer input for each. Since PGI allows them to be indirectly connected, the
logic that this would waste is saved.

IDR

PCPGI

Ay

Ax

Dx

Dy

OV

OA

IR(7..0)

Figure 18: Data sources for ALU operations

Unfortunately, this graph cannot be 2-coloured. There is always at least one node that cannot be assigned
either colour. This node must be shared between both ALU inputs. One minimal colouring is shown in Figure
19. The shading of the nodes indicates which ALU input they will be assigned to.

As can be seen, PGI is the node that has been chosen as the one that is present on both inputs. This is
a particularly good colouring, because PGI is useful for all sorts of operations including those where a register
value is routed through the ALU instead of being transferred directly. Suppose, for example, that we wish to
transfer PC ← IDR. One way to do this is to do an ALU operation: PC ← IDR + 0. PGI is programmed to
output zero, and when zero is added to IDR, the result is still IDR. This saves a data link between IDR and
PC by reusing the link through the ALU. A zero must be available on both ALU inputs if this is to be generally
possible. So sharing PGI makes perfect sense.

ALU Input A

ALU Input B

ALU Inputs A & B

IDR

OA

IR(7..0)

Dx

Dy

Ay

Ax PGI PC

OV

Figure 19: Data sources for ALU operations, assigned to an ALU input

What other transfer operations are required?
Now all the required data sources for the ALU have been determined. The next stage is to look at other types

of transfer operation. Each of the registers in the processor has one or more inputs too.

44

Table 15 shows where each register can be loaded directly from, in a single operation without routing through
any other component or register. For instance, the second line shows that OA may be loaded from the ALU
output or memory (MDR). It has links to both of these.

Table 15: Links Between Registers

ALU OA MDR PC
PC ←

√

OA←
√ √

OV ←
√ √

IR←
√

IDR←
√

MAR←
√ √

Ax ←
√

Ay ←
√

Dx ←
√

Dy ←
√

Clearly, the fewer of these links, the better. But they are all unavoidable, as will be explained. Each set of
links will now be examined, in column order.

Table 15 shows that the destinations of the ALU operations can be Ax, Dx, Ay, Dy, OV , OA and PC. All
of these are essential, because any of these can be the target of an arithmetic operation. Arithmetic operations
may happen between any pair of data or address registers, so Ax, Ay, Dx and Dy are essential. OV is also
essential: arithmetic operations take place on OV wherever an arithmetic operation takes place on an effective
address. OA and PC are both needed so that they can be used to iterate through memory addresses: operations
like PC ← PC + 1 are common during data fetches.

The destination of the OA and PC registers can only be MAR. These are needed so that OA and PC can
both provide the address for memory accesses.

The destinations of the MDR register are the registers that memory can be fetched directly into. load op-
erand value must be able to load values from memory into the OV register, and the instruction fetcher must
be able to load instructions into IR. And immediate values must be loaded into IDR. Even the OA register
needs to be loaded from memory, because memory addresses appear in extension words.

It is not really possible to leave out any of these transfers by loading memory into another register, and then
transferring it afterwards, because all of these registers may be needed at the same time, and in any case this
wouldn’t save any data links.

DataSize and other supporting registers
In many of the tables in this section, and Appendix C, DataSize was used whenever the operation size (byte,

word or double word) was important. Sometimes DataSize was assigned (as in BCC) and sometimes it was
decoded from the instruction register in some way. DataSize was also tested in “if” statements and used to
generate immediate values. But it was never explained what DataSize actually is.

DataSize is a register that contains the data size of the current instruction. Instructions on the 68020 are
byte, word, or double-word sized. Quite often, this is specified by a code in bits 6 and 7 of the opcode. But this
is not always the case. For instance, the CMPA operation may be word or long sized, and the size is specified
by bit 8 of the opcode. So some way is needed to set DataSize from the instruction sequence.

To implement this, a control line called operation size control was added. It allows the operation size to
be set directly to WORD, DWORD or BYTE. However, since a lot of operations use a size inferred from the
instruction word, it also allows the operation size to be “SET FROM IR”. This decodes the size from bits 6 and
7 of the instruction word.

45

⇒ The source code of operation size control process.vhd can be found in Section E.9, Page 86

DataSize is a supporting register. Because it only needs to be set once per instruction, instruction sequences
can handle situations where they must do something slightly different depending on the operation size. This
is particularly useful in load operand value and store operand value. These need to load or store data of
a different size depending on the operation size. They have no other way of knowing what the operation size
should be, because they don’t know which instruction is being executed.

There are two other supporting registers. One is restore pc after immediate fetch, the other is ea -
move destination control. Both of these are single-bit registers.

restore pc after immediate fetch indicates to the fetch immediate data subroutine that it should put
the value of PC back to what it was when the subroutine was called. There is one case where this is useful: in
the branch instruction. Branches are specified relative to the end of the opcode, not the end of the immediate
values following it. So it is vital that PC is restored before the branch is taken. Adding this supporting register
allows fetch immediate data to do something slightly different in the one special case where this is required. If
it was not present, two versions of fetch immediate data would be required.

When ea move destination control is set, decode ea uses the second effective address field instead of the
first. A second effective address field appears only in the MOVE instruction, so again this allows a single special
case to be handled without needing two copies of a subroutine.

How the ALU operation required by a member of a family is decoded
Table 11 describes the state machine sequence for one of the families shown in Table 9. It includes the line

“Decode ALU operation”. In the case of the ADD, SUB, OR, AND and EOR family, bits 12 to 14 of the
instruction word indicate which operation is required. Table 16 shows how these bits translate to each operation.

Table 16: Translation of instruction word to ALU operation, for ADD, SUB, OR, AND and EOR instruc-
tions

IR bits 14..12 Op IR bits 14..12 Op
000 OR 100 AND
001 SUB 101 ADD
010 110

011 EOR 111

It was noticed that the same translations are also used by ADDA, SUBA, ADDX, and SUBX even though
they are in a different family. This reuse suggests that it is not really a good idea to put a case statement in
the state machine to select the ALU operation, because it must appear in more than one state.

Additionally, although it would be possible to implement the ADD instruction only as it is seen in Table
13, an optimised implementation might be preferred. For example, ADD operations on two data registers could
be done in one clock cycle if this was handled as a special case within the processor. In this case, within one
instruction, there would be two separate places where the ALU operation would need to be decoded.

Both of these factors indicate that decoding of ALU operations would be best placed outside of the state
machine. And this is what was in fact done. The alu control mux process is notified of the current instruction
family (e.g. ALU I FAMILY for ADDI, SUBI, etc) using the alu mode control line. It then examines appropriate
bits of the instruction register to decide which actual ALU operation should be used. It also decides whether
the condition code register (which stores the carry, negative, zero and overflow flags) should be updated for the
current operation.

alu mode can also be assigned ALU ADD or ALU SUBTRACT for ALU operations that are done for internal
reasons, such as PC ← PC + 1. The condition code register isn’t updated for these operations.

By using this method of operation, any state machine sequence for a particular family can access the required
ALU operation without needing any decoding of its own. A simple assignment to the alu mode control line is

46

all that is required.
⇒ The source code of alu muxes.vhd can be found in Section E.2, Page 75

How ConditionTrue works
In Appendix C, some operations featured a test for ConditionTrue. This test has not yet been explained.

Many operations that test a condition code belong to families. All the branch and DBcc instructions are examples.
This is because every instruction on the 68020 that tests condition codes does so in exactly the same way. A
four bit pattern in bits 8 to 11 in the instruction word tells the processor which conditions to test.

It makes sense to put the condition test in a special process, so that the case statement that provides it
does not appear in more than one place in the state machine. This special process examines bits 8 to 11 in the
instruction word, does the test required by them, and sets a condition true signal that can be tested within
the state machine.

The condition tests are mostly arithmetic - greater than, greater than or equal, equal, and so on. Some
test the overflow and carry flags. Usefully, [Motorola 1985] lists all the tests in a figure that is reproduced here
(Figure 20). As can be seen, the table includes the bit pattern of each condition and the method for computing
it, specified in terms of the C (carry), V (overflow), N (negative), and Z (zero) flags.

It is a simple matter to implement these in VHDL. It is made even easier by the realisation that one of the
bits in the condition (the least significant) always inverts the result of the test.
⇒ The source code of do branch process.vhd can be found in Section E.6, Page 82

Figure 20: 68020 Condition Codes, from [Motorola 1985]

Instruction Fetch and Decode - Register Transfers for the Processor’s Main Loop
Register transfers have now been designed for the execution of every instruction and every subroutine. The

only missing operations are the ones that the processor must do before every instruction: fetch and decode.
These are very simple, and easily implemented without adding any new register transfers. Table 17 illustrates
the processor’s main loop.

14.4. Implementing the Register Transfers in VHDL

At this point, register transfers for all the processor’s operations have been designed. They need only be translated
to VHDL, and the work will be complete. But before this can take place, the VHDL that actually provides the
register transfers must be implemented.

There are three distinct parts to be implemented. A generator for the PGI data source is needed, along with
the ALU input multiplexers, and finally, the actual register transfer process that manages all the registers. Each
part is discussed below.

The processor generated immediate (PGI) data source
The PGI data source was required to generate a fairly substantial set of very short numbers. In the register

transfers examined above, it was found that it would need to generate 0, 1, 2, 3 and 4. It would also need

47

Table 17: Register Transfers in the Main Loop

Initialisation: PC ← 0 PC must be set to the program’s start
CLOCK

Fetch: MAR← PC Prepare to fetch 1st byte of instruction
PC ← PC + 1
CLOCK

IR15..8 ←MDR Store 1st byte of instruction
MAR← PC Prepare to fetch 2nd byte
PC ← PC + 1
CLOCK

IR7..0 ←MDR Store 2nd byte
PC ← PC + 1
CLOCK

Decode and Execute
CALL instruction decoder output
CLOCK

Then return to fetch..
JUMP fetch
CLOCK

to generate y - a number taken from bits 11 to 9 in the instruction word and used by ADDQ. Finally, it
would need to generate a value based on the data width of the current operation for register transfers such as
Ax ← Ax +DataSize. All of these numbers fit within 4 bits - the greatest is 8.

The use of a 4 bit multiplexer to select between these numbers saves making both the 32 bit ALU mul-
tiplexers much larger to be able to select from these numbers directly. So a 4 bit multiplexer process called
alu input muxes 2 was written in VHDL to generate the PGI value, based on a control line called pgi source.
⇒ The source code of alu muxes.vhd can be found in Section E.2, Page 75

The ALU input multiplexers
Both multiplexers were placed into a process called alu input muxes. Two control lines, alu source a and

alu source b, were used to control the outputs of each multiplexer.
⇒ The source code of alu muxes.vhd can be found in Section E.2, Page 75

The register transfer processes
One process, register transfers, handles most data transfers between registers, including those from the

ALU output to a register and those from memory to a register. The only three types of transfer that are not
handled here are the transfer of OA or PC to the memory address register (handled by memory address mux),
the transfer of the contents of OV to memory (handled by memory input mux), and the transfer of ALU data to
Ax or Dx, which is discussed below.

Every register has one control line, which selects the source of the data for that register, or is set to an
“UNCHANGED” setting if the register should be left alone. For instance, the PC register has a control line,
pc source, which can be set to either ALU TO PC (to load PC from the ALU output), or left as the default
PC UNCHANGED.

48

An alternative to this design was to have one or two control lines that control all register transfers. However,
the implementor would then have the difficult problem of how to handle more than one register transfer in a
single clock cycle. This is easy when there is one control line per register, but if control lines were shared between
registers, the implementor would have to ensure that every transfer required appeared in the register transfer
process.
⇒ The source code of memory.vhd can be found in Section E.8, Page 83

Register transfers to the address and data registers
As mentioned above, transfers to Ax and Dx were not handled by the register transfer process. Both these

registers are actually implemented in block RAM, and data only reaches them from the ALU. So the control lines
to load data into them are actually just the “write enable” lines of the block RAM. No extra process is needed
to control this. The two lines used were reg update address x and reg update data x. By default, these lines
are zero. When set to one, the value of Ax or Dx is updated to match the ALU output.

14.5. Implementing the state machine sequences for each instruction

Now a series of control lines have been defined to provide every register transfer required, translation of the low
level register transfers to VHDL can begin. Table 18 shows some of the translations that are used.

Table 18: Translating Low Level Register Transfers to VHDL

Low Level VHDL
PC ← PC + 1 alu input a <= ALU A PC ;

alu input b <= ALU B PGI ;

alu mode <= ALU INT ADD ;

pc source <= ALU TO PC ;

pgi source <= PGI ONE ;

MAR← OA mar source <= OA TO MAR ;

Ax ← Ax − 4 alu input a <= ALU A ADDRESS X ;

alu input b <= ALU B PGI ;

alu mode <= ALU INT SUBTRACT ;

reg update address x <= ’1’ ;

pgi source <= PGI FOUR ;

IR15..8 ←MDR ir source <= MDR TO IR 1 ;

IR7..0 ←MDR ir source <= MDR TO IR 0 ;

Every register transfer translates directly to one or more lines of VHDL, fitting within a single state machine
state. ALU operations translate to four or five control line assignments. These set input A, input B, the operation
required, and the destination. An additional line that may be set is the PGI source. All other operations take
a single assignment. Using these translations, it is quite easy to turn the register transfers into VHDL. During
translation, the implementor aimed to make as many things as possible happen in a single clock cycle: this
improves the efficiency of the processor. Of course, only one ALU operation can take place at a time, but any
other register transfers shown in Table 15 can take place simultaneously. So the typical state will do several
register transfers and an ALU operation.

All the instructions discussed in this section were implemented by this translation process.
Support for each instruction or family was put into a separate file. Additionally, each subroutine was put

into a separate file, and the processor’s main loop was put into a file named start.sm. These files can be seen

49

in Appendix I. Putting each sequence into a separate file will allow the state machine generator to include only
the sequences that are needed by the current program. Files of particular interest include:

• The main loop (start.sm) on page 170.

• decode ea on page 155.

• load operand value on page 158.

• store operand value on page 160.

• fetch immediate data on page 162.

15. Implementing the generator

At this point, all the building blocks for the processor have been implemented. It is now time to implement the
generator that will take the building blocks and produce a minimal processor from them, optimised to run just
one application.

The generator’s job is to produce a single VHDL file containing all the changeable parts of the processor. As
discussed in Section 11.1, this should be done by reading through files provided by the user. All VHDL in these
files always goes into the output file. But some special directives (those that appear in Table 5 on Page 26) are
replaced by generated components: the state machine, the instruction decoder, and so on.

The generator, which is called the “State Machine Compiler” (SMC), was written in C++ in order to take
advantage of STL13. The main procedure of the generator reads an initialisation file that tells it where to find
the various files it needs: where the root VHDL input file is, where state machine sequences can be found, and
where the opcode database is. Using this information, it creates an instance of the Control class, which provides
all the functionality of the program.

Control reads in the root input file, scanning for input matching one of the directives in Table 5. Any input
that doesn’t match goes straight through to the output. Input that does match causes some type of generation
process to take place, producing the state machine, instruction decoder or an optimisation function. These
generation processes are explained on the following pages.
⇒ The source code of control.cc can be found in Section G.3, Page 96
⇒ The source code of control.h can be found in Section G.4, Page 100
⇒ The source code of main.cc can be found in Section G.5, Page 101

15.1. The state machine generator

The state machine is generated by the following process:

Loading Phase: First, load in all the state machine sequences from a directory specified in the generator’s
configuration. Each sequence will execute one instruction, provide a subroutine, or (in one case) the
processor’s main loop.

Requirements Phase: Then, use information from the program scanner to work out which sequences are
needed, based on what instructions appear in the program.

Integration Phase: Integrate all the sequences into one state machine: the “Master State Machine”.

Generation Phase: Turn the master state machine into VHDL: putting it into the output in place of the
“INSERT STATE MACHINE” directive.

13 The Standard Template Library (STL) contains generic code for managing sets, linked lists and trees

50

⇒ The source code of state.cc can be found in Section G.16, Page 128
⇒ The source code of state.h can be found in Section G.17, Page 131
⇒ The source code of state machine.cc can be found in Section G.18, Page 132
⇒ The source code of state machine.h can be found in Section G.19, Page 138
⇒ The source code of state machine loader.cc can be found in Section G.20, Page 139
⇒ The source code of state machine loader.h can be found in Section G.21, Page 142

The Loading Phase
The loading phase is very simple. An instance of the State Machine Loader class is created by the Control

class. Then, a procedure named Add State Machine Directory is called with the name of a directory containing
state machine sequences. For every file that matches the glob pattern “*.sm”, Add State Machine Directory
calls the procedure Add State Machine. This procedure arranges for an instance of the State Machine class to
be created, based on the file. This class reads the file into memory.

State machines are represented in memory as a linked list, in which each state is a separate list item. A
state may include any number of commands, and these are also stored as a linked list. Commands within a
state are either actual VHDL, used for control line assignments and conditional tests, or special state machine
commands, such as JUMP and RETURN (as seen in Tables 2 and 3). The boundary between two states is denoted
by the presence of the CLOCK directive, so named because it means “wait for a clock edge”.

The State class is responsible for containing a single state, and the Command class holds a single command,
and (optionally) its parameter. The parameter is typically the name of the label to be JUMPed to or CALLed.
Each State may have zero or more labels assigned to it by the LABEL directive: any of these labels can be used
in a JUMP or CALL.

The State Machine class has some powerful features. Two of them are provided by the Depends On and
Provides functions, which both return sets of labels. Provides returns a set of all the labels that are defined
within the state machine: in other words, a list of all the states within it that are accessible by JUMP or CALL.

Depends On returns a list of all the labels that this state machine requires in order to execute, but does not
actually define. This is a list of all of the labels that are not actually within the state machine, but are still
accessed by JUMP or CALL - in other words, a list of subroutines that the state machine needs.

The Requirements Phase
The Provides function is used by State Machine Loader to make a mapping that associates each state label

with the state machine sequence that provides it. In this way, when the Require Microsub procedure is called
with the name of a subroutine that is required, the State Machine Loader can immediately see which state
machine sequence will be required to provide that subroutine, just by looking at the mapping.

For every instruction in the program, the program scanner is able to determine which state machine sequence
will be required to execute it. As a result of this, Require Microsub can be called with the label of each required
state machine sequence. During these calls, State Machine Loader builds a set of required state machines called
required machines.

The Integration Phase
The integration phase takes place in the Build Master Machine function. All the required state machines

in the list are moved into one master state machine sequence. This process begins by finding the “root state
machine”. This state machine contains the processor’s main loop: it is in a file called start.sm and begins with
the label “start”. It is known that the first state in this state machine is the one that the processor must start
in, because that state resets PC and begins the first instruction fetch.

Incorporate Sub Machine copies all the states from each required machine and adds them to the end of the
destination machine. After this, the master state machine is finalised. Absolute state numbers are assigned to
every state in the machine. The numbers are assigned sequentially from zero, so the state after a state numbered
n is n + 1. Since every state is now identified by a number, the parameters of every JUMP and CALL can be
translated from a name to an absolute state number. This is done in the Generation phase.

51

The Generation Phase
In the Generation phase, the master state machine is written out as a VHDL case statement. Every state is

now labelled by number, although VHDL comments are generated to show the original name of each state (if
any). The directives are translated into the VHDL control line assignments that they represent - see Section 13.1
for details of these.

This process is carried out by the Compile Machine function, whenever “INSERT STATE MACHINE” is seen in
the input VHDL. The work is done recursively: the case is generated in the State Machine class, but each state
within it is generated by the State class.

15.2. The instruction decoder generator

Section 8 explained the requirements for an optimised instruction decoder: that is, an instruction decoder capable
of decoding only the opcodes that appear in a particular program.

The Opcode Database
The first requirement was that the valid bit patterns for all 68020 instructions should be specified in an

“opcode database”. The opcode database that was designed is very simple: a flat file in which each instruction
is associated with an opcode bit pattern. Just one line is needed per 68020 instruction.

One way to build an opcode database would be to create a table with one entry for every possible bit pattern
(there would be 216 entries). The instruction that each bit pattern decoded to would be entered in the table.
Unfortunately, although some instructions (e.g. RTS) have only one possible bit pattern, many have hundreds
or even thousands. The worst is the MOVE instruction, which has 9000 possible bit patterns. It is very difficult
for the implementor to enter the correct instruction in so many places, because it is so easy to enter it in a subtly
incorrect place.

It is best if every instruction takes up only one line, because this makes the work of the implementor very easy.
But how can a single line entry specify bit patterns so precisely that it is possible (for example) to distinguish
between all the forms of the ADD instruction seen in Table 4 on Page 20?

After much thought, a method to specify the possible bit patterns for each instruction was designed. It is
based on the realisation that the 68020 instruction bit patterns always consist of a number of fields, concatenated
together. A “field” is a group of 1 or more bits, all grouped together in the opcode, which may have some rules
constraining the value of those bits. The field that has been the subject of a lot of discussion is the 6 bit Effective
Address (EA) field But there are other fields, such as the 2 bit Operation Size field, and the 3 bit Register
Number field.

Figure 21 illustrates how one sort of ADD instruction (type 1) is composed of five fields. The first is fixed
(1101), but the rest define which operation is required, and what it should operate on. Significantly, not all of
these fields can take any value. The operation size field, for instance, cannot be “11”.

1101

Fixed

Register Dy 0 Op Size

Fixed

4 bit

Effective Address
2 bits1 bit

Variable

3 bit 6 bits

VariableVariable

Figure 21: Fields in the ADD instruction (type 1)

Aside from those fields that have fixed values, like 1101 here, there are only a few different sorts of field.
Every sort of field has fixed rules about what values it can have. For instance, no Operation Size field is ever
“11”, and no Effective Address field is ever “111110”, because that pattern is reserved for future expansion.

So every instruction was defined in terms of fields. The implementor went through [Motorola 1985], looking
at the definition of each instruction, and translating it to a set of fields. Whenever new field types were required,
they were invented on the spot and the rules defining them were written down separately. They were also assigned
a unique ASCII letter, to be used to describe them.

52

Every instruction bit pattern was described by a series of 16 ASCII letters and numbers, one for each bit.
The value of a fixed field was specified directly by a binary sequence using “1” and “0”. Variable fields were
described by the ASCII letter assigned to them. So the ADD instruction above was described as shown in Figure
22.

1101 RRR 0SS EEEEEE

Figure 22: ADD instruction, as described in ASCII

The first 4 bits are described as the fixed field 1101. The next 3 bits are a register number field (RRR).
Then, there is a 1 bit fixed field (0). Then, there is a 2 bit operation size field (SS) followed by the 6 bit effective
address field (EEEEEE).

The opcode database consists of 131 lines that begin like this - one for every instruction. The line contains the
name of the state machine sequence that executes the instruction, which is the label assigned to the first state in
that sequence. It also features a comment, giving a short description of the instruction to aid the implementor’s
memory. The database was named opcode map.
⇒ The source code of opcode map can be found in Section H.1, Page 145

Scanning the opcode database to produce the instruction decoder
The opcode database is scanned by the Opcode Map Reader class.
⇒ The source code of opcode map reader.cc can be found in Section G.10, Page 117
⇒ The source code of opcode map reader.h can be found in Section G.11, Page 121

For each instruction, the Read Opcode Map function produces a description that indicates which bit patterns
make up that instruction. The description takes the form of a directed acyclic graph. Every edge in the graph
is a test of a particular field’s value, by application of the rules for that field. Figure 23 illustrates this for ADD.

IR(7..6) /= 11

N
o T

est

IR(8) /= 1IR(5..0) /= 111101
IR(5..0) /= 111110
IR(5..0) /= 111111

IR(15) /= 0 IR(14) /= 0 IR(13) /= 1 IR(12) /= 0

Testing the fixed field value

Testing Operation Size

Testing the Register field value

Testing Effective Address

ADD instruction identified

Figure 23: ADD instruction described as a graph

Note that all the rules in Figure 23 are of the form field 6= value. This is deliberate. It was noticed that all
fields have more “allowed” values than “not allowed” values, so describing fields in terms of what values are not
allowed makes the rules simpler.

Treating each instruction description as a finite state automaton
Readers who are familiar with automata may recognise the graph in Figure 23 as a finite state automaton. In

fact, it is a deterministic finite state automaton (DFA14) that accepts exactly the instruction bit pattern, and
14A DFA is “executed” by following state transitions. Execution begins in the initial state, which is drawn with an arrow

leading from nowhere pointing to it. At each state, execution follows the state transition whose condition is true.
Usually, data is read from an input and compared to the value written by the transition. If they match, the transition

53

nothing else. However, because this DFA is also a tree (it has no cycles), it can be executed instantaneously: all
the tests on every edge can be performed at once.

It was this observation that led the author to the realisation that certain aspects of automata theory could
be used to produce a “master” DFA that decodes every 68020 instruction, with one accept state per instruction.
This DFA could be built automatically from all the instruction descriptions, and the information gathered by
the program scanner could be used to simplify it. This would have the great advantage that unused branches
(ones leading to instructions that could never be executed) could be pruned. And tests that would always be
true or always false could be eliminated. So the decoder could be generated and then simplified automatically.

To produce this master DFA, it would be necessary to merge all the instruction description DFAs into one
DFA. On the surface, this is not a difficult problem. After all, the DFA is nothing but a series of nodes separated
by edges representing decisions. To merge another DFA in, the program needs only to scan both DFAs from left
to right and look for the first decision that differs, which is the merge point. Unfortunately, this doesn’t work in
general because not all instructions have the same fields. Look at Figure 24. The two instructions (ADD of type
1, and ADD of type 5, to use the numbering from Table 4) here have fields of different widths. When merging
them, the merge program must find a way of distinguishing between the decision at (1), which is essentially “bits
7 to 6 are not 11” and the decision at (2), which is essentially “bit 7 is not 0”. (Up until this test, the two are
identical.) Merging will only work in the specific case where all the decisions are based on the same number of
bits.

IR(7..6) /= 11

IR(7) /= 0IR(6) /= 0

N
o T

est

IR(8) /= 1IR(5..0) /= 111101
IR(5..0) /= 111110
IR(5..0) /= 111111

IR(15) /= 0 IR(14) /= 0 IR(13) /= 1 IR(12) /= 0

ADD (type 1) instruction identified

N
o T

est

IR(8) /= 1

IR(15) /= 0 IR(14) /= 0 IR(13) /= 1 IR(12) /= 0

IR(5..0) /= 111101
IR(5..0) /= 111110
IR(5..0) /= 111111

ADD (type 5) instruction identified

(1)

(2)

Figure 24: An example of two instruction decoding DFAs that are difficult to merge (ADD of types 1 and
5)

Fortunately, automata theory already provides a solution to this problem. A non-deterministic finite state
automaton (NDFA) is much the same as a DFA, except that it is possible to have more than one possible choice
at each node. It is possible for a particular input to lead to any number of NDFA nodes, whereas in a DFA a
particular input always leads to just one node or rejection. Crucially, the same input can lead to both an accept
and a reject state in an NDFA.

Another way to describe each instruction is to use an NDFA that accepts every possible bit pattern, but
also rejects exactly those that the field rules do not allow. Figure 25 illustrates such an NDFA for the ADD
instruction. All bit patterns are accepted - the path along the top of the figure will accept any 16 bit pattern.
But some - those that are not valid ADD bit patterns - are also rejected (the rejecting nodes are marked with
an R). For instance, if the most significant bit of IR is zero, the transition marked (3) will be taken. It leads
directly to a reject state.

This is actually a far better way to describe each instruction. Every decision is based on testing one bit only.
And, when all the decisions are based on testing one bit, merging is possible. Unfortunately, the instruction is now
described by an NDFA, and since NDFAs are non-deterministic, they cannot be used to make the deterministic
decoding decisions that are required.

is followed to the next state. Execution ends when an accepting state (drawn with a double circle) is reached, or when
no transition can be followed. In the latter case, the DFA has rejected the input.

54

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

R

0

R

0

R

0

R

1

R

1

R

1

1 1 1 1 R

R

R

0

0

1

1

11 0

1

1

Accept State

(3)

Figure 25: NDFA that accepts the ADD instruction

Automata theory provides the solution to this problem. There is an algorithm that can translate an NDFA
into a DFA. It is possible to make any NDFA deterministic: the set of “languages” accepted by all NDFAs is
exactly the same as the set of languages accepted by all DFAs. An equivalent DFA for Figure 25 produced using
this algorithm is shown in Figure 26.

0 0 0 01 Accept State

1 1 1

0

1

0

1

0

1

0

11 1 1

0

1

0

10 0 0

1 0

0

1 1

0 0 0

1

Figure 26: DFA that accepts the ADD instruction

The algorithm works with a recursive, i.e. self-calling, procedure called Transform NDFA To DFA. It is called
with two parameters. One is the current NDFA node, another is the current DFA node. The procedure is initially
called with the initial state in the NDFA, and the initial state in a new, empty, DFA. Each DFA node is going
to represent one or more NDFA nodes.

The procedure examines the transitions from the current NDFA node, which are divided into two types:
those that are taken when the input is 1, and those that are taken when the input is 0. For each transition type
x:

• Build a set S of all the NDFA nodes that could be reached by transition x from the current NDFA node.

• If S has at least one member, then a DFA node will be needed to represent transition x. If such a node
does not exist, it is created. This node is called N , and it is made a successor of the current DFA node on
transition x.

• If S contains a rejecting state, then N is marked as a rejecting node, regardless of whether it is marked as
an accepting one.

• If S contains an accepting state, and N is not marked as a rejecting node, then N is marked as an accepting
state.

Having done this, the successors of the current NDFA node are visited by a recursive call to Transform -
NDFA To DFA. Thus, the whole NDFA is converted to a DFA.

The NDFA for each instruction is built as described above, and then translated into an equivalent DFA. The
DFA accepts exactly the instruction, in much the same way as the one in Figure 23. But this time, every decision
is done on a single bit. So it will be possible to merge this DFA with others to produce a master DFA.

55

DFA and NDFA classes
A class called NDFA DAG was written to represent both NDFAs and DFAs (as a DFA is a special type of NDFA).

It is essentially a container for the two: almost an abstract data type, but not a pure abstract data type due to
its ability to generate VHDL to represent a DFA. The class NDFA Node was used to represent a single node of
the NDFA/DFA contained within NDFA DAG.
⇒ The source code of ndfa dag.cc can be found in Section G.6, Page 102
⇒ The source code of ndfa dag.h can be found in Section G.7, Page 105
⇒ The source code of ndfa node.cc can be found in Section G.8, Page 105
⇒ The source code of ndfa node.h can be found in Section G.9, Page 116

The Read Opcode Map function creates a new NDFA for every instruction using this class. By default, this
NDFA accepts every bit pattern. But calling the Reject Pattern procedure causes a particular value of a
particular field to be rejected. This means that the Read Opcode Map function can apply the rules it knows
about each field to reject particular values of each field. By doing this, it ensures that the NDFA will reject all
invalid bit patterns for the instruction. The result is similar to that seen in Figure 25.

This NDFA is then made deterministic (made into a DFA) by a call to Make Deterministic which applies
the algorithm discussed earlier by a call to Transform NDFA To DFA. This produces a DFA that recognises exactly
this instruction, like the one in Figure 26.

Producing the master DFA
Although the master DFA could be produced by merging the DFAs in the way described on Page 54, there is

a simpler way. The best way to merge all the instruction description DFAs into a master DFA is to treat each of
them as an NDFA. NDFAs can be freely merged, because a single input value can lead to more than one node.
And as the algorithm to convert an NDFA to a DFA has already been written, it is easy to produce the master
DFA from this.

Pruning the master DFA
It is important that the master DFA is as small and simple as possible, because every decision in it will be

translated into a decision made by the instruction decoder. The process is called pruning, and it is easy because
the Make Deterministic procedure always makes a DFA that is also a tree. Therefore, there is only one path
from the root to each node, and there are no cycles. Algorithms can thus work on the DFA recursively.

Pruning is possible when the program scanner has provided a list of all the opcodes that are required. For
each opcode, the DFA is traversed. During traversal, every node is marked as “visited”. When the accept state
is reached, it is marked as “enabled”.

During pruning, every unvisited node is removed by the Delete Dead Branches procedure, which recurses
through the DFA. A dead branch is one that leads from a unvisited node, or leads only to rejection, or leads
to an accept state that is disabled. Delete Dead Branches goes to the leaf nodes of the DFA tree, and while
recursing back up the tree, it applies the rules for detecting dead branches, deleting any that it finds.

Next, the tree is “compressed”. Compression deletes unnecessary decisions, and again works recursively. If a
node only has one successor, then the node is redundant - having reached that node, it is certain that decoding
will reach its successor (recall that the DFA doesn’t need to detect invalid opcodes, because all opcodes are
assumed to be valid). Equally, if a node has two successors, but both go to the same accept state, then either
successor can replace the node, because only one accept state can be reached from this node.

Dead branch elimination and compression reduce the DFA to a very minimal tree. This tree contains the
minimal number of decisions required to differentiate between the valid opcodes. Although there is no proof that
it is a minimum (the smallest possible) tree, there is no doubt that it is very close to that. In experiments, it
was found that the ratio of the number of opcodes to the number of decisions is typically one to one.

Generating the VHDL for the minimal decoder
VHDL is inserted into the output file in place of the “INSERT INSTRUCTION DECODER” directive. It is generated

from the DFA recursively. Each node in the DFA is translated to a new if statement, testing an appropriate bit

56

of the instruction word. Each accept state is translated into a statement of the form “decoded state <= "n”"
;”, where n is the number of the first state in the sequence that executes the instruction.

Figure 27 shows an output from the generator, produced for a small program with only three instructions:
MOVE, ADDQ, and BRA. As can be seen, the three instructions can be differentiated in just three decisions.

Figure 27: Instruction Decoder for a very small program

instruction_decoder : process (instruction_register) is

variable ir : word_register ;

begin

ir := instruction_register ;

if ir (14) = ’1’ then

if ir (13) = ’1’ then

decoded_state <= "010110" ; -- (branch)

else --ir(13)= ’0’

decoded_state <= "000111" ; -- (alu_q_family)

end if ;

else --ir(14)= ’0’

decoded_state <= "001110" ; -- (move_family)

end if ;

end process instruction_decoder ;

15.3. The ALU and Effective Address optimisers

Earlier, a method of modularising the ALU by restricting the control line values was discussed. This was to be
done using an “optimisation function”. The operation of such functions will now be examined. These functions
can also be used to modularise the addressing modes that are available.

Optimisation functions are generated by the Optimisation Manager class, which holds a list of objects to
represent each type of optimisation. Figure 28 shows an example.

Figure 28: An example of an optimisation function, set up to allow only addition and subtraction within
the ALU

subtype param_alu_internal_op is alu_internal_op_type ;

function apply_alu_internal_op (i : in param_alu_internal_op)

return param_alu_internal_op is

begin

if (i = ALU_INT_ADD) or (i = ALU_INT_REV_SUB) or (i = ALU_INT_SUB)

then

return i ;

else

return ALU_INT_ADD ;

end if ;

end function apply_alu_internal_op ;

Wherever the ALU control lines are assigned, a call to the function is made:

alu_internal_op <= apply_alu_internal_op (ALU_INT_ADD) ;

In this case, the ALU INT ADD assignment is carried straight through to the ALU control line, alu internal -
op. When XST optimises the code, it sees that that the function will always return ALU INT ADD, so it replaces
the assignment with alu internal op <= ALU INT ADD. On the other hand, assignments to (say) ALU INT EOR
are not carried through. Since they will never be used, it doesn’t matter what they are replaced with, so they
are replaced with any valid operation that will be supported. In this case, they are replaced with ALU INT ADD.
Then, XST can see that EOR will never be used, an eliminate it from the ALU.

Of course, this function needs to be automatically generated. To do this, a list of all the ALU operations
and addressing modes that are required by the program must be built.

57

Determining which ALU operations are required
The 68020 will always need an ALU that supports addition and subtraction. These operations are essential,

because register transfers such as PC ← PC+1 are always carried out by the processor, no matter what program
is running. It is the other ALU operations (AND, OR, CMP and EOR) that may not always be essential.

These operations will only be used when one or more instruction is present in the program that needs them.
Certain 68020 instructions are associated with particular ALU operations: for instance, the EORI instruction
requires the EOR operation, and the ADDX instruction requires the ADD operation. The program scanner is
able to produce a set of all the instructions used in the program, so what is needed is some way to associate each
list item with the ALU operations it requires (if any).

The opcode database already has one entry per instruction, associating each opcode bit pattern with the
state machine sequence that executes it. So this is a natural place to include the set of the ALU operations
that each instruction requires. An extra field was added to the file to describe this set. Each ALU operation
was assigned an ASCII character, according to the convention seen in C (see Table 19). Strictly, there is no real
need to include the Add and Subtract operations since they are always needed. They are included anyway for
completeness: if an instruction explicitly requires Add or Subtract, it can still be specified.

Table 19: ASCII codes for ALU operations

Code Operation Code Operation
+ Add - Subtract
& And | Or
^ EOR c Compare

The C++ generator software includes a set of Optimisation classes, of which ALU Optimisation handles
ALU optimisations. One instance of ALU Optimisation is created, and tracks the ALU operations that are
required. It holds a set of required operations, and may add to this set when the Notify procedure is called.
Notify is called by Optimisation Manager for every instruction found by the program scanner: once for every
ASCII character found in the set of ALU operations for that instruction. It translates each character into an
allowed control line value: ^ becomes ALU INT EOR, and so on.
⇒ The source code of alu optimisation.cc can be found in Section G.1, Page 96
⇒ The source code of alu optimisation.h can be found in Section G.2, Page 96
⇒ The source code of optimisation.cc can be found in Section G.12, Page 122
⇒ The source code of optimisation.h can be found in Section G.13, Page 124

Generating the optimisation function in VHDL
The Generate VHDL procedure (inherited by ALU Optimisation from Basic Optimisation) produces the op-

timisation function from the list of allowed control line values. The function always takes the form seen earlier
in Section 15.3, with variations only in the list of allowed control lines varies.

Addressing mode optimisations
Support for certain addressing modes can be removed in the same way as ALU operations were: by an

optimisation function. In fact, most of the code is re-used. The optimisation function is used in a slightly
different way, since it is called within the state machine.

The ALU optimisations were driven by per-instruction information about which opcodes were required.
Addressing mode optimisations cannot work in the same way, because information about the addressing modes
used can only be gathered by looking at the opcodes present in the program, not by looking at the instructions.

Every opcode using an addressing mode is examined. The three bit Mode and three bit Register specifiers
that make up the effective address field are extracted. Section 11 has information about the function of these

58

subfields. Sets are built up, containing the values that may be seen in these subfields. These are then used to
generate two optimisation functions, one for each field.

The EA Optimisation and EA Reg Optimisation and class handle addressing mode optimisations. In each,
the Notify procedure is responsible for adding to the set of required addressing modes. It is called for every
instruction found by the program scanner, and if a particular instruction includes an addressing mode, the mode
used is examined. The bit pattern is extracted and added to a list of addressing modes that may appear. This
works in essentially the same way as Notify in ALU Optimisation, except that information about the required
modes is gathered from the opcode and not from the information in the opcode database.

EA Optimisation maintains the set of possible values of the Mode field, and EA Reg Optimisation maintains
the set of possible values of the Register field.

Using the addressing mode optimisation functions
The function generated by EA Optimisation is called apply ea mode. It works in exactly the same way as

the ALU optimisation function, limiting its return value to the input values that are possible for the current
program. It is used in the effective address decoder case statement, where it restricts the selection:

case apply_ea_mode (ea_mode) (2 downto 0) is

when "010" => -- Address Register Indirect mode:

...

apply ea reg is generated by EA Reg Optimisation. It works in the same way:

when "111" =>

case apply_ea_reg (ea_reg) (2 downto 0) is

when "000" => -- Absolute address (Word mode)

...

XST will recognise that some of the case statement choices will never be taken. The logic that represents
these can be eliminated.

15.4. The program scanner

The only part of the generator that has not yet been described is the program scanner. The program scanner is
a very simple component because it obtains its list of instructions from GNU objdump, as discussed in Section
11.3.

The scanner is found in a procedure called Require Opcodes In File, which reads in a file output by objdump.
It reads every line that matches a particular regular expression: a regular expression that finds the first line
describing each instruction, as instructions may be split over several lines if they have many extension words.
From this line, the regular expression extracts the opcode of the instruction. For example, here is the output of
objdump for a very small program.

a.out: file format ihex

Disassembly of section .sec1:

00000000 <.sec1>:

0: 203c 0a0f 0a09 movel #168757769,%d0

6: 23c0 0000 8000 movel %d0,0x8000

c: 5280 addql #1,%d0

e: 6000 fff6 braw 0x6

...

From this file, the scanner would read opcodes 0x203c, 0x23c0, 0x5280 and 0x6000. The extension words are
irrelevant and are discarded. The names of the instructions that objdump has identified are also unimportant,
because the instruction decoder can be used to identify each opcode. So no attempt is made to parse the
instruction names: only the opcode is read.

59

Both the Optimisation Manager class and the Opcode Database class are informed of each opcode that
is read. Each of these classes decode the opcode. In the case of the Opcode Database class, the opcode is
registered as being present and nodes in the instruction decoder DFA are marked as “visited”. In the case of the
Optimisation Manager class, information is found about the optimisations that are relevant to the opcode.

Part V.
Evaluation and Conclusion

16. Evaluation

Implementation is now complete, so the project work will be evaluated. Evaluation will look at five aspects of
the work:

Does the State Machine Compiler work? The tests used to verify the correctness of the state machine
compiler will be discussed.

Does the processor work? This will involve some tests to verify that the processor runs programs correctly.

How much FPGA space does it take up? One requirement for the processor was that it should take a
minimal number of logic gates. This will be evaluated in various conditions.

How does it compare to other soft processor cores? The processor will be evaluated against some
contemporary cores.

How extensible is the processor? Is it possible to add new instructions?

16.1. Does the State Machine Compiler work?

The main proof of the operation of the State Machine Compiler (SMC) is that it generates correct VHDL that
can be synthesised into a working processor. However, various other tests were also used to check that it operates
correctly. SMC has the following features to aid testing:

• Assertions are widely used throughout the SMC. The C++ assert() macro is used to test over 50 condi-
tions during execution of the program. In this way, SMC partly tests itself.

An excerpt from the NDFA Node class appears in Figure 29, illustrating one such assertion. Here, the
assertion checks that a node marked as an accepting state has an attached Accept State object. This will
always be the case, unless some other code has incorrectly marked a state as an accepting state.

• SMC has a debugging setting in which plenty of information about its operations is printed out. This allows
the tester to check through SMC’s operations. In particular, it is possible to check that the instruction
decoding DFA is produced and compressed correctly, because it is printed out as a tree.

These features allowed the tester to try various inputs to SMC and check for correct behaviour. The state
machine generator and instruction decoder generator were essentially tested separately. The state machine
generator was tested with various incorrect inputs: duplicated labels, JUMPs to non-existent inputs, empty
states, VHDL after the final CLOCK statement, lack of a root state machine, and many more.

The instruction decoder generator was tested during its development. A special test module was written
that allowed the user to input an opcode. The opcode would then be decoded using the DFA. This module was
extended so that it only supported a user-defined set of opcodes. It was then extended again to add support for
compressing the tree. Having tested the decoder with many different opcodes, the tester gained a high degree of
confidence in its correct operation.

60

Figure 29: An assertion in NDFA Node
void NDFA_Node :: Print_NDFA_DAG (bool with_pointers , FILE * fd ,

const char * old_tab_str)

{

if (is_accept_state)

{

assert (accept_state != 0L) ;

accept_state -> Print_Info (fd , old_tab_str) ;

16.2. Does the processor work?

In total, 23 different types of instruction were implemented on the processor. Because some of these types are
families, 32 actual instructions are available. Table 20 lists them. These instructions are enough to run a lot of
small programs, written in C or assembly.

Table 20: The 32 Implemented Instructions

CMPA SUBA ADDA CMPI ORI ANDI SUBI ADDI
EORI CMP OR SUB EOR AND ADD ADDQ
SUBQ Bcc CLR DBcc JMP JSR LEA LINK
MOVE MOVEQ NOP PEA RTS Scc TST UNLK

To demonstrate that the processor works correctly, a variety of different programs were tested on it. The
first programs to be tested were very short assembly programs that output a number sequence. Page 59 features
an example of such a program. However, proper tests require more realistically large programs.

Testing with a C program
One aim of the project was to allow C programs to be run. So one test focuses on the processor’s ability to

execute a C program. fib.c is a Fibonacci sequence generator written in C.
⇒ The source code of fib.c can be found in Section F.1, Page 91

The sequence generator outputs the Fibonacci sequence, sending the numbers to the display: 0, 1, 1, 2,
3, 5, etc. The processor and program are known to be operating correctly when this sequence is seen on the
output. The sequence quickly reaches the limit of the display (255), but even when it has gone past this point,
the operation of the processor can still be checked by comparing the sequence to that seen on the output of the
vm68k emulator.

The Fibonacci program worked perfectly. This demonstrates that the processor is capable of running a C
program correctly, which in itself demonstrates that a large number of instructions are implemented properly.

Complete Functional Verification Test
But the Fibonacci program doesn’t really demonstrate that all instructions are correctly implemented: they

just work well enough in that case. The fvt.s assembly program attempts to test every instruction sufficiently
to give a high degree of confidence in the correct operation of the processor. Particular attention was paid to
instructions that were not thought to be well tested in the Fibonacci C program.
⇒ The source code of fvt.s can be found in Section F.2, Page 91

The program assumes that the MOVE and CMP instructions work correctly - if they do not, one of the first
tests will fail anyway. fvt.s runs an instruction and then tests that it has affected the processor and memory

61

in the way that was expected. For instance, the LINK instruction modifies a register value, a location in RAM,
and the stack pointer. All three outputs are tested for correctness by fvt.s.

fvt.s also tests UNLK, JSR, RTS, JMP, DBcc, CLR, Scc, SUBA, LEA and PEA. These are not well tested
by fib.c. The program outputs a number to the display according to the number of the test it is running. If
a test fails, then the program will stop with the failed test number on the output display. However, if all tests
pass, a success code appears on the display. Thus, fvt.s demonstrates that the processor is able to run all of
the instructions. The program ran all the instructions correctly, repeating the test ten times before displaying
the success code.

16.3. How much FPGA space does the processor take up?

The FPGA space taken up by a particular design is measured by XST in “slices” and “4 input lookup tables”.
As described in Section 1.2, the lookup tables are used to generate logical functions. There are two of them per
slice, and two slices per configurable logic block. FPGA space can be talked about in terms of either of these:
but it is best to use the number of lookup tables since these are always more of these than there are slices. XST
prints information about the number of slices and lookup tables (LUTs) during synthesis to indicate the amount
of FPGA space used by a design.

In the test setup, the processor’s size depends not only on the actual size of the processing logic, but also on
the size of the debugging hardware and the ROM, because those parts are synthesised at the same time as the
processor. Obviously, it would be incorrect to count those parts, so their effect on the amount the synthesised
logic will be examined first.

The amount of space taken up by ROM
Figure 30 is a graph relating the number of words of ROM used to the number of LUTs on the FPGA. The

processor was built with support for only one instruction and with debugging support removed. Programs of
size 64, 128, 256, 384 and 512 words were used. As might be expected, there is a linear relationship between the
amount of ROM used and the number of LUTs, and each LUT holds, on average, 0.84 words of ROM.

Figure 30: Graph of the number of LUTs used to represent ROM

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 0 64 128 192 256 320 384 448 512 576

N
um

be
r

of
 L

U
T

s
us

ed

ROM Size (Words)

The amount of space taken up by debugging hardware
The processor was generated with support for a few instructions and a small ROM. Without changing this

configuration, it was built with and without the debugging hardware. The debugging hardware increases the
number of LUTs required from 967 to 1178: it requires an additional 211 LUTs.

The effect of the number of supported instructions on the processor size
The project aimed to create a processor that was ideally suited to running a particular program, and was an

62

optimal size for that program. It was intended that this should primarily be achieved by omitting support for
instructions that are not required.

The processor’s size is certainly strongly affected by the number of instructions that are required for a
program. Figure 31 shows how the processor size is affected by the number of different instructions in the program.
A very short program called 23instructions.s was written containing one of each of the 23 instructions that were
implemented. The program does nothing: it just forces the processor to synthesise support for all instructions.
After synthesis, the last instruction was removed and the processor was re-synthesised for the new program. This
continued until all instructions had been removed.

Figure 31: Graph of processor size against program complexity

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
um

be
r

of
 L

U
T

s
us

ed

Number of instructions supported

⇒ The source code of 23instructions.s can be found in Section F.3, Page 95

As can be seen, adding support for an instruction makes the processor bigger, or approximately the same size.
The relationship between the instructions supported and the processor size is far from linear. As the number
of instructions present increases, the amount of extra hardware required for each gets smaller. There is a big
difference between the space required by 1, 2 and 3 instructions. But there is little difference between the space
required by 22 and 23 instructions. This is unfortunate. The instructions are sharing hardware with each other,
so the total amount of hardware required changes less as the number of instructions increases.

It is expected that a program of any practical size will use at least half the implemented instructions.
Experiments showed that the Fibonacci C program used 18 instruction types, and the processor and ROM for
it took up 1440 LUTs. Had it used all 23 implemented instructions, it would have used up 1441 LUTs. Just as
in Figure 31, the extra instructions have very little effect on the overall size of the processor.

The size of the processor can be reduced by leaving out support for instructions, but the effect is almost
negligible if the program contains more than about 3 different types of instruction. Since any practical program
would have many more types of instruction than that, not much space is actually saved by modular instruction
support.

The effect of the number of ALU operations used
Leaving out operations in the ALU does have a substantial effect on the processor size. Processors were

generated for two programs. The programs were the same size, so the same amount of ROM was generated, but
the first program consisted only of ADD instructions, and the second was a mix of EOR, OR, AND, ADD and
SUB instructions. All of these instructions use the same state machine sequence (they belong to one family), so
the programs had identical state machines. Only the ALU differed between the processors.

The ALU optimiser removed support for EOR, OR and AND from the ALU for the first processor. This
made the entire processor and ROM use 1202 LUTs. The second processor had a full featured ALU. The second
processor and ROM used 1363 LUTs. 161 extra LUTs were required for three ALU operations.

It is possible that some large programs might leave out one or two ALU operations. The Fibonacci C program
used only ADD, SUB and AND, so some space would be saved by leaving out EOR and OR support. But most

63

large programs would probably need all ALU operations.

The effect of the number of addressing modes used
Leaving out addressing modes does have some effect on the processor’s size. A series of test versions of

the processor were built, for the same program, but with support for a varying number of addressing modes.
Addressing modes were removed in the reverse of the order seen in Table 12. The graph in Figure 32 was drawn
to show the effect of removing these modes on the processor’s size.

Figure 32: Graph of processor size against addressing mode support

 1270

 1280

 1290

 1300

 1310

 1320

 1330

 1340

 1350

 1360

 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 L

U
T

s
us

ed

Number of addressing modes supported

As can be seen, adding support for addressing modes has only a small effect on the size of the processor.
Adding all modes only adds 40 extra LUTs. This difference is not particularly significant: it accounts for only
around 3% of the size of the processor. This is because removing the modes only affects a few states in the state
machine. It does not allow large pieces of hardware to be removed, because all the hardware used for addressing
mode support is used elsewhere too.

16.4. How does it compare to other soft processor cores?

In order to compare the processor fairly to other soft processor cores, the memory map, RAM, ROM and
debugging support were removed. The processor was made into a VHDL entity with only an interface to the
memory. It is important that the cores are compared fairly, so all must have a similar interface. Here is the
68020 clone’s interface:

port (clock : in std_logic ;

memory_address : out dword_register ;

memory_output : in byte_register ;

memory_input : out byte_register ;

memory_write_enable : out std_logic ;

reset : in std_logic) ;

To further ensure a fair comparison, the 68020 was built with support for all the 23 instruction types that
were implemented. The other processors are not modular: they are always complete, so comparisons can only
be made between complete processors.

The 68020 clone was first compared to a processor called MyRisc [Wallander 1998]. MyRisc is a clone of the
32 bit MIPS processor. It is a complete processor, and being a 32 bit processor it has a similar ALU to the one
used in this project. However, since it is RISC, it has a much smaller control line sequencer than the 68020 clone.

The 68020 clone was then compared to a processor called T80 [Wallner 2002], a Z80 clone. This is actually
the only other CISC soft core that could be found. The control line sequencer is quite complex, but the ALU is
far simpler: it is only 8 bits wide.

Table 21 compares features of the three processors.
As can be seen in Table 21, the 68020 compares quite favourably to MyRisc - the two have a similar size. It

compares very well to T80: it is about half T80’s size.

64

Table 21: Soft Processor Core Comparison

Processor Type Width LUTs
68020 clone CISC 32 bit 1303

MyRisc RISC 32 bit 1395
T80 CISC 8 bit 2241

16.5. How extensible is the processor?

It is quite easy to add support for new instructions to the processor. Doing so is just a matter of adding a new
state machine sequence, and updating the opcode map with details of the new instruction. There are plenty
of examples available to guide an attempt at doing this. The user of the processor could implement custom
instructions to meet his or her needs. These instructions could easily re-use the ALU and existing register
transfers, or could use extra hardware integrated into the processor.

For example, the 68020 logical shift and rotate instructions could be implemented by adding a “shifter”
process, and a new state machine sequence for logical shifts and rotates. One way to do this would be to
make OV into a shift register: a register with shift capability. It would have new control lines, which would be
programmed by the new state machine sequence.

16.6. Summary of the Evaluation

Tests showed that the processor is able to correctly execute all the 23 instruction types that were implemented.
Tests also demonstrate that the processor’s size varies according to the number of instructions required, the
number of ALU operation types needed, and the number of addressing modes needed. In other words, the
processor works and is generated as expected.

Unfortunately, the modularisation doesn’t work as well as was hoped. There is little difference between a
processor that supports many of the instructions and a processor that supports all of them. Unless the program
is short, the processor will always have support for most instructions, and consequently will always be about the
same size.

Nevertheless, even when support for all instructions and all ALU operations has been enabled, the processor
is still quite small when compared to other soft processor cores. This is probably because only a subset of the
68020 instructions were implemented. A lot of less useful 68020 features were omitted.

17. Conclusion

This project has demonstrated that a clone of the 68020 can be implemented on an FPGA, supporting a subset
of the 68020 features. It also showed that the features could be tailored to the program in four areas. The
instruction decoder, control sequencer, ALU and addressing mode support could all be optimised to match the
program. However, it was found that the optimisation doesn’t work as well as expected.

The processor compares well to other soft processor cores in terms of its usage of the FPGA, but it should
be remembered that it doesn’t support all the 68020 features even when all features are included. The processor
runs at up to 10MHz according to XST, and executes each instructions in five or more clock cycles.

A lot of things could be done better if the project was attempted again. Choosing to implement the registers
using Block RAM was a mistake, because read accesses to the registers took one clock cycle. Values could not be
looked up immediately, and this meant that a lot of extra work was needed to update registers. It was thought
that this approach would save FPGA logic, and this is true, but it doesn’t save very much at all. The registers
would have been better implemented using asynchronous RAM, as is done in MyRisc.

It was also a mistake to put the RAM, ROM and memory mapper in the same VHDL entity as the rest of
the processor. This was done to make the processor easier to generate, but it makes it more difficult to reuse the

65

processor in other applications with different memory configurations.
The operation size control line should really have been set by the instruction decoder, and not by the state

machine sequence. A lot of instructions had to have initial setup states where this line was programmed, wasting
space in the state machine and a clock cycle.

A feature to change the width of the address registers was discussed in the Design section, but never imple-
mented due to a lack of time. This feature could have allowed some more space to be saved on the FPGA.

The main problem with the processor is that large programs tend to use so many different features that most
of the features are always needed. There is little to be gained by removing the few that aren’t needed. Future
work might look into the best way to avoid this. There are two main possibilities:

• Suppose that SMC had access to a profile of the program as well as a list of the opcodes within it. It
could then replace an infrequently used opcode with a series of opcodes that do the same thing, but use
less hardware. For instance, the LINK opcode could be replaced by a series of MOVEs. SMC would
have to weigh up the advantages and disadvantages of including hardware support for each instruction or
implementing it in software: a tricky problem because of the number of instructions involved.

• There might well be advantages to defining the state machine sequences in a register transfer language
instead of VHDL. The obvious advantage is that the sequences would be described at a higher level, and
would thus be easier to understand. Fewer mistakes would be made in writing them. But SMC would
be able to understand the operations in each state without parsing VHDL. It would be able to remove
unnecessary decisions, just as it did in the instruction decoder. Every if or case could be optimised.
Furthermore, optimisations like those used in a compiler could be employed. Subroutines could be inlined,
or removed if never called. A better optimised state machine could be much smaller.

In conclusion, the project has demonstrated that a modular processor can be built, but much more research
is needed to make the modularity useful to larger programs.

Part VI.
Appendices

A. Bibliography

References

[Ashenden 1998] P. Ashenden, The Student’s Guide to VHDL, Morgan-Kaufmann (1998)

[Hennessy 1996] J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach, Second Edi-
tion, Morgan-Kaufmann (1996)

[Herveille 2002] R. Herveille et al, Specification for the WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, Revision B.3, (2002)
http://www.opencores.org/wishbone/

[Motorola 1985] Motorola Inc, MC68020 32-bit Microprocessor User’s Manual, Second Edition, Prentice-Hall
(1985)

[Ponder 2001] J. Ponder, Generator, a Sega MegaDrive/Genesis emulator, (2001)
http://www.squish.net/generator/

66

[Sasayama 2001] K. Sasayama, Libvm68k, an M68000 virtual machine library written in C++, (2001)
http://www.hypercore.co.jp/

[Tredennick 1988] N. Tredennick, Experiences in Commercial VLSI Microprocessor Design, Microproc Mi-
crosyst 12n8: 419-432 (1988)

[Wallander 1998] A. Wallander, MYRISC - A VHDL Implementation of a MIPS, Lule̊a University of Tech-
nology (2000) http://www.ludd.luth.se/ ~walle/projects/myrisc/

[Wallner 2002] D. Wallner, T80 - a Z80 microprocessor soft core, (2002)
http://www.opencores.org/cvsweb.shtml/t80/

[Xilinx 2002] Xilinx Inc., Spartan-IIE FPGA Family documentation (2002) http://www.xilinx.com/

B. Building-Block Hardware Components that appear in Diagrams

B.1. Multiplexers

Out

A
B
C
D

Selection

Figure 33: Multiplexer

Figure 33 shows a 4-to-1 multiplexer, where one of the four input lines (A, B, C or D) is selected by the
“Selection” input and sent to the output: “Out”. “Multiplexer” is commonly abbreviated to “Mux”.

Multiplexers used in processors typically act on many data lines at the same time. A 32-bit 2-to-1 multiplexer,
for example, connects one of two sets of 32 data lines on the input to the output. They allow a data source to
be selected from more than one source.

Please note that in some diagrams, the Selection input is not shown. This is because the Selection input is
a control line, and those diagrams omit control lines for clarity.

Here is the VHDL for a typical 16 bit 4-to-1 multiplexer:

...

signal input_a : std_logic_vector (15 downto 0) ; -- 16 bits

signal input_b : std_logic_vector (15 downto 0) ;

signal input_c : std_logic_vector (15 downto 0) ;

signal input_d : std_logic_vector (15 downto 0) ;

signal output : std_logic_vector (15 downto 0) ;

signal mux_select : std_logic_vector (1 downto 0) ; -- 2 bits

begin

...

process (input_a , input_b , input_c , input_d , mux_select) is

begin

case mux_select is

when "00" => output <= input_a ;

when "01" => output <= input_b ;

when "10" => output <= input_c ;

when others => -- i.e. "11"

output <= input_d ;

end case ;

end process ;

...

67

B.2. Links between Components

These are shown as lines connecting components in each diagram. Sometimes a link will be wider than one bit:
in this case, the number of bits making up its width will be written in brackets somewhere along the line. The
thickness of the line will also illustrate the number of bits, with thicker lines indicating a wider link.

B.3. Registers

Outputs

InputEnable

PC (32)

Figure 34: Register

Figure 34 shows a 32 bit register. Registers are a simple type of memory, provided by D-type flip flops. They
store the data that is present on the input, if the “Enable” input is set, on a clock edge (i.e. during a transition
from one clock state to the other). A 32 bit register stores the data present on 32 data lines.

Registers only have one input: if the register may have several sources, a multiplexer is essential. They may
have any number of outputs. The stored data is always available on the outputs: no “fetch” is required, as there
is no address. Some of the diagrams do not illustrate an Enable input. This is because the Enable input is a
control line, and those diagrams omit control lines for clarity.

Here is the VHDL for a typical 32 bit register:

...

signal input : std_logic_vector (31 downto 0) ; -- 32 bits

signal output : std_logic_vector (31 downto 0) ;

signal enable : std_logic ;

begin

...

process (input , enable , clock) is

begin

if (clock = ’1’)

and (clock’event)

and (enable = ’1’)

then

output <= input ;

end if ;

end process ;

...

C. High-Level Register Transfers for Selected Instructions

In the following descriptions, these symbols are used:

• instruction register(a..b) refers to bits a through b in the current instruction word.

• x refers to instruction register(2..0) - the number at bit positions 2..0 in the instruction word.

• y refers to the number at bit positions 11..9 in the instruction word.

• Dn means Data Register n.

• An means Address Register n.

• IDR means Immediate Data Register.

68

• EA means the actual value of the effective address (an absolute memory location).

• [EA] means the value stored in memory at location EA.

• [An] means the value stored in memory at location An.

BCC: branch conditionally

if instruction register(7..0) = 0 then DataSize←Word
Fetch Immediate Data
if ConditionTrue then

PC ← PC + IDR
else if instruction register(7..0) =0xff then

DataSize← DoubleWord
Fetch Immediate Data
if ConditionTrue then

PC ← PC + IDR
else

if ConditionTrue then
PC ← PC + instruction register(7..0)

DBCC: test condition, decrement and branch

DataSize←Word
Fetch Immediate Data
if ConditionTrue then Dx ← Dx − 1

if Dx 6= −1 then
PC ← PC + IDR

JMP: jump

PC ← EA

JSR: jump to subroutine (call)

(y is always 7, so Ay = Stack Pointer)
Ay ← Ay − 4
[Ay]← PC
PC ← EA

MOVE: move

[DestEA]← [SourceEA]

MOVEQ: move short immediate

Dy ← instruction register(7..0)

NEG:

Decode DataSize from instruction register(7..6)
[EA]← 0− [EA]

69

RTS: return from subroutine

(y is always 7, so Ay = Stack Pointer)
PC ← [Ay]
Ay ← Ay + 4

SCC: set according to condition codes

DataSize← Byte
if ConditionTrue then

[EA]←0xff
else

[EA]← 0

SUB: subtract

Decode DataSize from instruction register(7..6)
if instruction register(8) = 0, then

Dy ← Dy − [EA]
else

[EA]← [EA]−Dy

SUBA: subtract address registers

Decode DataSize from instruction register(7..6)
Ay ← Ay − [EA]

SUBI: subtract immediate

Decode DataSize from instruction register(7..6)
Fetch Immediate Data
[EA]← [EA]− IDR

SUBQ: subtract short immediate

Decode DataSize from instruction register(7..6)
[EA]← [EA]− y

SUBX: subtract with extend

Decode DataSize from instruction register(7..6)
if instruction register(3) = 0, then

Dy ← Dy −Dx − ExtendF lag
else

Ax ← Ax −DataSize
Ay ← Ay −DataSize
Ay ← Ay −Ax − ExtendF lag

70

D. Linker scripts and crt0.s

D.1. crt0.s file used for embedded applications
1 # 1 "crt0.S"

2 # 1 "<built-in>"

3 # 1 "<command line>"

4 # 1 "crt0.S"

5 # 17 "crt0.S"

6 # 1 "asm.h" 1

7 # 18 "crt0.S" 2

8

9 .title "crt0.S for m68k-coff"

10

11 .data

12 .align 2

13 _environ:

14 .long 0

15

16 .align 2

17 .text

18

19 .extern _main

20 .extern _exit

21 .extern _hardware_init_hook

22 .extern _software_init_hook

23 .extern _atexit

24 .extern ___do_global_dtors

25

26 .extern __stack

27 .extern __bss_start

28 .extern _end

29

30 .global _start

31 .global ___main

32 .global _atexit

33

34 _start:

35

36 movel #__stack, a0

37 cmpl #0, a0

38 jbeq 1f

39 movel a0, sp

40 1:

41

42 link a6, #-8

43

44 movel #__bss_start, d1

45 movel #_end, d0

46 cmpl d0, d1

47 jbeq 3f

48 movl d1, a0

49 subl d1, d0

50 subql #1, d0

51 2:

52 clrb (a0)+

53

54 dbra d0, 2b

55 clrw d0

56 subql #1, d0

57 jbcc 2b

58

59 3:

60

61 # lea _hardware_init_hook, a0

62 # cmpl #0,a0

63 # jbeq 4f

64 # jsr (a0)

65 #4:

66 #

67 # lea _software_init_hook, a0

68 # cmpl #0,a0

69 # jbeq 5f

71

70 # jsr (a0)

71 #5:

72 # 126 "crt0.S"

73 # movel #__FINI_SECTION__,(sp)

74 # jsr _atexit

75 #

76 # jsr __INIT_SECTION__

77

78 pea 0

79 pea _environ

80 pea sp@(4)

81 pea 0

82 jsr _main

83 # movel d0, sp@-

84

85 _halted_loop:

86 jmp _halted_loop

87

88

89 ___main:

90 _atexit:

91 rts

92

93 # jsr _exit

94

D.2. tiny.x linker script used for the embedded applications
1 /* linker script for my tiny binaries. */

2

3 OUTPUT_FORMAT("a.out-zero-big", "a.out-zero-big",

4 "a.out-zero-big")

5 OUTPUT_ARCH(m68k)

6 SEARCH_DIR("/usr/jdw108/m68k-utils/m68k-linux-aout/lib");

7 PROVIDE (__stack = 0x2000);

8 SECTIONS

9 {

10 . = 0;

11 .text :

12 {

13 CREATE_OBJECT_SYMBOLS

14 *(.text)

15 /* The next six sections are for SunOS dynamic linking. The order

16 is important. */

17 *(.dynrel)

18 *(.hash)

19 *(.dynsym)

20 *(.dynstr)

21 *(.rules)

22 *(.need)

23 _etext = .;

24 __etext = .;

25 }

26 . = ALIGN(0x0800);

27 .data :

28 {

29 /* The first three sections are for SunOS dynamic linking. */

30 *(.dynamic)

31 *(.got)

32 *(.plt)

33 *(.data)

34 *(.linux-dynamic) /* For Linux dynamic linking. */

35 CONSTRUCTORS

36 }

37 . = ALIGN(0x0c00);

38 .other :

39 {

40 _edata = .;

41 __edata = .;

42 }

43 .bss :

44 {

45 __bss_start = .;

72

46 *(.bss)

47 *(COMMON)

48 . = ALIGN(4);

49 _end = . ;

50 __end = . ;

51 }

52 }

E. VHDL sources

E.1. Source code of alu.vhd
1

2 carry <= ccr (0) ;

3 overflow <= ccr (1) ;

4 zero <= ccr (2) ;

5 negative <= ccr (3) ;

6 extend <= ccr (4) ;

7

8 -- Bits 0..6

9 alu_seg_1 : entity alu_segment

10 generic map (bits => 7)

11 port map (input_a => alu_input_a (6 downto 0) ,

12 input_b => alu_input_b (6 downto 0) ,

13 carry_in => alu_carry_in ,

14 alu_internal_op => alu_internal_op ,

15 carry_out => alu_carry_out_6 ,

16 output => alu_int_output (6 downto 0)) ;

17

18 -- Bit 7

19 alu_seg_2 : entity alu_segment

20 generic map (bits => 1)

21 port map (input_a => alu_input_a (7 downto 7) ,

22 input_b => alu_input_b (7 downto 7) ,

23 carry_in => alu_carry_out_6 ,

24 alu_internal_op => alu_internal_op ,

25 carry_out => alu_carry_out_7 ,

26 output => alu_int_output (7 downto 7)) ;

27

28 -- Bits 8..14

29 alu_seg_3 : entity alu_segment

30 generic map (bits => 7)

31 port map (input_a => alu_input_a (14 downto 8) ,

32 input_b => alu_input_b (14 downto 8) ,

33 carry_in => alu_carry_out_7 ,

34 alu_internal_op => alu_internal_op ,

35 carry_out => alu_carry_out_14 ,

36 output => alu_int_output (14 downto 8)) ;

37

38 -- Bit 15

39 alu_seg_4 : entity alu_segment

40 generic map (bits => 1)

41 port map (input_a => alu_input_a (15 downto 15) ,

42 input_b => alu_input_b (15 downto 15) ,

43 carry_in => alu_carry_out_14 ,

44 alu_internal_op => alu_internal_op ,

45 carry_out => alu_carry_out_15 ,

46 output => alu_int_output (15 downto 15)) ;

47

48 -- Bits 16..30

49 alu_seg_5 : entity alu_segment

50 generic map (bits => 15)

51 port map (input_a => alu_input_a (30 downto 16) ,

52 input_b => alu_input_b (30 downto 16) ,

53 carry_in => alu_carry_out_15 ,

54 alu_internal_op => alu_internal_op ,

55 carry_out => alu_carry_out_30 ,

56 output => alu_int_output (30 downto 16)) ;

57

58 -- Bit 31

59 alu_seg_6 : entity alu_segment

73

60 generic map (bits => 1)

61 port map (input_a => alu_input_a (31 downto 31) ,

62 input_b => alu_input_b (31 downto 31) ,

63 carry_in => alu_carry_out_30 ,

64 alu_internal_op => alu_internal_op ,

65 carry_out => alu_carry_out_31 ,

66 output => alu_int_output (31 downto 31)) ;

67

68

69 alu : process (alu_mode , extend , alu_internal_op ,

70 alu_input_b , alu_int_output) is

71 variable cin : std_logic ;

72 begin

73 -- Should alu_carry_in be set?

74 -- First we look at the extend bit in the CCR. In one

75 -- mode this is taken into account.

76 if (alu_mode = ALU_X_FAMILY)

77 and (extend = ’1’)

78 then

79 cin := ’1’ ;

80 else

81 cin := ’0’ ;

82 end if ;

83

84 -- Then, carry_in is set. The state is inverted if we are

85 -- doing a subtraction or comparison, because subtractions

86 -- are actually performed as additions with the 2’s complement

87 -- of input b. Inverting the carry input is necessary to get

88 -- the correct 2’s complement value.

89 if (alu_internal_op = ALU_INT_CMP)

90 or (alu_internal_op = ALU_INT_SUB)

91 or (alu_internal_op = ALU_INT_REV_SUB)

92 or (alu_internal_op = ALU_INT_REV_CMP)

93 then

94 alu_carry_in <= not cin ;

95 else

96 alu_carry_in <= cin ;

97 end if ;

98

99 alu_output <= alu_int_output ;

100 end process alu ;

101

102 alu_ccr : process (alu_internal_op , operation_size ,

103 alu_carry_out_6 , alu_carry_out_7 ,

104 alu_carry_out_14 , alu_carry_out_15 ,

105 alu_carry_out_30 , alu_carry_out_31 ,

106 alu_int_output , alu_modify_ccrs , ccr) is

107 variable bits_0_to_7_are_zero : std_logic ;

108 variable bits_0_to_15_are_zero : std_logic ;

109 variable bits_0_to_31_are_zero : std_logic ;

110 begin

111 -- Set the condition code registers, if the ALU mode

112 -- is one in which they may be modified (all internal

113 -- operations, PC <- PC + 1 etc, are non-CCR modifying).

114 if (alu_modify_ccrs = ’1’)

115 then

116 if (alu_int_output (7 downto 0) =

117 conv_std_logic_vector (0 , 8))

118 then

119 bits_0_to_7_are_zero := ’1’ ;

120 else

121 bits_0_to_7_are_zero := ’0’ ;

122 end if ;

123

124 if (alu_int_output (15 downto 8) =

125 conv_std_logic_vector (0 , 8))

126 and (bits_0_to_7_are_zero = ’1’)

127 then

128 bits_0_to_15_are_zero := ’1’ ;

129 else

130 bits_0_to_15_are_zero := ’0’ ;

131 end if ;

132

133 if (alu_int_output (31 downto 16) =

74

134 conv_std_logic_vector (0 , 16))

135 and (bits_0_to_15_are_zero = ’1’)

136 then

137 bits_0_to_31_are_zero := ’1’ ;

138 else

139 bits_0_to_31_are_zero := ’0’ ;

140 end if ;

141

142 case operation_size is

143 when BYTE =>

144 alu_ccr_output (0) <= alu_carry_out_7 ;

145 alu_ccr_output (1) <= alu_carry_out_7

146 xor alu_carry_out_6 ;

147 alu_ccr_output (2) <= bits_0_to_7_are_zero ;

148 alu_ccr_output (3) <= alu_int_output (7) ;

149 when WORD =>

150 alu_ccr_output (0) <= alu_carry_out_15 ;

151 alu_ccr_output (1) <= alu_carry_out_15

152 xor alu_carry_out_14 ;

153 alu_ccr_output (2) <= bits_0_to_15_are_zero ;

154 alu_ccr_output (3) <= alu_int_output (15) ;

155 when others => -- DWORD =>

156 alu_ccr_output (0) <= alu_carry_out_31 ;

157 alu_ccr_output (1) <= alu_carry_out_31

158 xor alu_carry_out_30 ;

159 alu_ccr_output (2) <= bits_0_to_31_are_zero ;

160 alu_ccr_output (3) <= alu_int_output (31) ;

161 end case ;

162 else

163 alu_ccr_output (3 downto 0) <= ccr (3 downto 0) ;

164 end if ;

165 alu_ccr_output (15 downto 4) <= ccr (15 downto 4) ;

166 end process alu_ccr ;

167

168 ccr_update_process : process (clock , alu_ccr_output) is

169 begin

170 if (clock = ’1’)

171 and (clock’event)

172 then

173 ccr <= alu_ccr_output ;

174 end if ;

175 end process ccr_update_process ;

176

177 dbcc_monitor : process (alu_int_output) is

178 constant minus_one : word_register := (others => ’1’) ;

179 begin

180 -- This process is solely for the use of DBcc.

181 -- If the ALU output is -1 (word), then alu_output_is_minus_one is

182 -- set to 1.

183 if (alu_int_output (15 downto 0) = minus_one)

184 then

185 alu_output_is_minus_one <= ’1’ ;

186 else

187 alu_output_is_minus_one <= ’0’ ;

188 end if ;

189 end process dbcc_monitor ;

190

E.2. Source code of alu muxes.vhd
1

2

3

4 alu_input_muxes : process (alu_source_a , alu_source_b ,

5 pc_register ,

6 register_file_address_out_x , register_file_address_out_y ,

7 register_file_data_out_x , register_file_data_out_y ,

8 operand_value , operand_address ,

9 alu_input_small_number ,

10 immediate_data_reg ,

11 instruction_register) is

12 begin

13 -- MUX for alu_input_a:-

75

14 case alu_source_a is

15 when ALU_A_PC =>

16 alu_input_a <= pc_register ;

17 when ALU_A_ADDRESS_X =>

18 alu_input_a <= register_file_address_out_x ;

19 when ALU_A_DATA_X =>

20 alu_input_a <= register_file_data_out_x ;

21 when ALU_A_OPERAND_VALUE =>

22 alu_input_a <= operand_value ;

23 when others => -- ALU_A_PGI =>

24 alu_input_a (3 downto 0) <= alu_input_small_number ;

25 alu_input_a (31 downto 4) <= (others => ’0’) ;

26 end case ;

27

28 -- MUX for alu_input_b:-

29 case alu_source_b is

30 when ALU_B_PGI =>

31 -- A small number from 0 to 15. We do it with a separate

32 -- signal, alu_input_small_number, so that a large

33 -- 32 bit mux will not be synthesised just to switch

34 -- between 4 bit numbers.

35 alu_input_b (3 downto 0) <= alu_input_small_number ;

36 alu_input_b (31 downto 4) <= (others => ’0’) ;

37 when ALU_B_IDR =>

38 alu_input_b <= immediate_data_reg ;

39 when ALU_B_ADDRESS_Y =>

40 alu_input_b <= register_file_address_out_y ;

41 when ALU_B_DATA_Y =>

42 alu_input_b <= register_file_data_out_y ;

43 when ALU_B_OA =>

44 alu_input_b <= operand_address ;

45 when others => -- ALU_B_LOW_BYTE_OF_IR =>

46 -- IR(7..0) sign extended to 32 bits - used for branches

47 alu_input_b (7 downto 0) <=

48 instruction_register (7 downto 0) ;

49 alu_input_b (31 downto 8) <=

50 (others => instruction_register (7)) ;

51 end case ;

52 end process alu_input_muxes ;

53

54 alu_input_muxes_2 : process (pgi_source , operation_size ,

55 instruction_register , ea_reg) is

56 variable qim : std_logic_vector (4 downto 0) ;

57 variable postinc : std_logic_vector (4 downto 0) ;

58 begin

59 -- MUX for alu_input_small_number:-

60 case pgi_source is

61 when PGI_ZERO =>

62 alu_input_small_number <= "0000" ;

63 when PGI_ONE =>

64 alu_input_small_number <= "0001" ;

65 when PGI_TWO =>

66 alu_input_small_number <= "0010" ;

67 when PGI_THREE =>

68 alu_input_small_number <= "0011" ;

69 when PGI_FOUR =>

70 alu_input_small_number <= "0100" ;

71 when PGI_QUICK_IMMEDIATE =>

72 -- This is meaningful only for ADDQ instructions.

73 if (instruction_register (11 downto 9) = "000")

74 then

75 alu_input_small_number <= "1000" ;

76 else

77 alu_input_small_number (3) <= ’0’ ;

78 alu_input_small_number (2 downto 0) <=

79 instruction_register (11 downto 9) ;

80 end if ;

81 when PGI_POSTINC_PREDEC =>

82 -- Calculate modifier for postinc/predec

83 -- effective addresses.

84 case operation_size is

85 when BYTE =>

86 -- Byte operations on register 7 are treated

87 -- as word operations so as to preserve

76

88 -- stack alignment.

89 if (ea_reg = "111")

90 then

91 alu_input_small_number <= "0010" ;

92 else

93 alu_input_small_number <= "0001" ;

94 end if ;

95 when WORD =>

96 alu_input_small_number <= "0010" ;

97 when others => -- DWORD

98 alu_input_small_number <= "0100" ;

99 end case ;

100 end case ;

101 end process alu_input_muxes_2 ;

102

103 alu_control_mux : process (alu_mode ,

104 alu_reverse_operands , instruction_register) is

105 variable sub_op : alu_internal_op_type ;

106 variable cmp_op : alu_internal_op_type ;

107 variable op : alu_internal_op_type ;

108 begin

109 if (alu_reverse_operands = ’1’)

110 then

111 sub_op := ALU_INT_REV_SUB ;

112 cmp_op := ALU_INT_REV_CMP ;

113 else

114 sub_op := ALU_INT_SUB ;

115 cmp_op := ALU_INT_CMP ;

116 end if ;

117

118 -- The aim of this process is to translate an arithmetic

119 -- operation type described in the opcode into something that

120 -- the ALU can understand. There is a slightly different

121 -- translation for each type of instruction.

122 case alu_mode is

123 when ALU_I_FAMILY =>

124 case instruction_register (11 downto 9) is

125 when "000" =>

126 op := ALU_INT_OR ;

127 when "001" =>

128 op := ALU_INT_AND ;

129 when "010" =>

130 op := sub_op ;

131 when "011" =>

132 op := ALU_INT_ADD ;

133 when "101" =>

134 op := ALU_INT_EOR ;

135 when "110" =>

136 op := cmp_op ;

137 when others => -- op is (really) undefined.

138 op := ALU_INT_ADD ;

139 end case ;

140 alu_modify_ccrs <= ’1’ ;

141 when ALU_Q_FAMILY|ALU_CLR_FAMILY =>

142 case instruction_register (8) is

143 when ’0’ =>

144 op := ALU_INT_ADD ;

145 when others =>

146 op := sub_op ;

147 end case ;

148 alu_modify_ccrs <= ’1’ ;

149 when ALU_NO_FAMILY|ALU_A_FAMILY|ALU_X_FAMILY =>

150 case instruction_register (14 downto 12) is

151 when "000" =>

152 op := ALU_INT_OR ;

153 when "001" =>

154 op := sub_op ;

155 when "011" =>

156 if (instruction_register (8) = ’1’)

157 and (alu_mode = ALU_NO_FAMILY)

158 then

159 op := ALU_INT_EOR ;

160 else

161 op := cmp_op ;

77

162 end if ;

163 when "100" =>

164 op := ALU_INT_AND ;

165 when "101" =>

166 op := ALU_INT_ADD ;

167 when others => -- op is (really) undefined.

168 op := ALU_INT_ADD ;

169 end case ;

170 alu_modify_ccrs <= ’1’ ;

171 when ALU_ADD_UPDATE_CCRS =>

172 op := ALU_INT_ADD ;

173 alu_modify_ccrs <= ’1’ ;

174 when ALU_ADD =>

175 op := ALU_INT_ADD ;

176 alu_modify_ccrs <= ’0’ ;

177 when ALU_SUBTRACT =>

178 op := sub_op ;

179 alu_modify_ccrs <= ’0’ ;

180 when others => -- op is (really) undefined.

181 op := ALU_INT_ADD ;

182 alu_modify_ccrs <= ’0’ ;

183 end case ;

184 alu_internal_op <= apply_alu_internal_op (op) ;

185

186 end process alu_control_mux ;

187

E.3. Source code of alu segment.vhd
1 -- alu_segment.vhd

2 --

3 -- The entity here implements an n-bit wide slice of the ALU.

4 -- The width is set by the ‘bits’ generic parameter.

5 --

6

7 library ieee ;

8 use ieee . std_logic_1164 . all ;

9 use ieee . std_logic_arith . all ;

10 use ieee . std_logic_unsigned . all ;

11 use m68k_types . all ;

12

13 entity alu_segment is

14 generic (bits : integer) ;

15 port (input_b : in std_logic_vector ((bits - 1) downto 0) ;

16 input_a : in std_logic_vector ((bits - 1) downto 0) ;

17 output : out std_logic_vector ((bits - 1) downto 0) ;

18 carry_in : in std_logic ;

19 carry_out : out std_logic ;

20 alu_internal_op

21 : in alu_internal_op_type) ;

22 end entity alu_segment ;

23

24 architecture basic of alu_segment is

25 begin

26

27 -- ALU internal operation codes

28 -- ALU_INT_OR output <- A or B

29 -- ALU_INT_AND output <- A and B

30 -- ALU_INT_SUB output <- A - B

31 -- ALU_INT_ADD output <- A + B

32 -- ALU_INT_EOR output <- A xor B

33 -- ALU_INT_CMP output <- B - A

34 -- ALU_INT_REV_SUB output <- B - A

35 -- ALU_INT_REV_CMP output <- B - A

36

37 process (input_b , input_a , alu_internal_op , carry_in) is

38 variable int_input_b : std_logic_vector

39 ((bits + 1) downto 0) ;

40 variable int_input_a : std_logic_vector

41 ((bits + 1) downto 0) ;

42 variable int_output : std_logic_vector

43 ((bits + 1) downto 0) ;

44 begin

78

45 int_input_a (bits + 1) := ’0’ ;

46 int_input_b (bits + 1) := ’0’ ;

47

48 if (alu_internal_op = ALU_INT_REV_SUB)

49 or (alu_internal_op = ALU_INT_REV_CMP)

50 then

51 -- Reverse subtraction. The result is B - A.

52 -- 2’s complement of A is obtained:

53 int_input_b (0) := carry_in ;

54 int_input_b (bits downto 1) := input_b ;

55

56 int_input_a (0) := ’1’ ;

57 int_input_a (bits downto 1) := not input_a ;

58 else

59 int_input_a (0) := carry_in ;

60 int_input_a (bits downto 1) := input_a ;

61

62 int_input_b (0) := ’1’ ;

63 if (alu_internal_op = ALU_INT_SUB)

64 or (alu_internal_op = ALU_INT_CMP)

65 then

66 -- For subtraction operations, 2’s complement of B

67 -- is obtained.

68 int_input_b (bits downto 1) := not input_b ;

69 else

70 int_input_b (bits downto 1) := input_b ;

71 end if ;

72 end if ;

73

74 case alu_internal_op is

75 when ALU_INT_AND =>

76 int_output := (int_input_a and int_input_b) ;

77 when ALU_INT_EOR =>

78 int_output := (int_input_a xor int_input_b) ;

79 when ALU_INT_OR =>

80 int_output := (int_input_a or int_input_b) ;

81 when others => -- ADD, SUB, CMP

82 int_output := (int_input_a + int_input_b) ;

83 end case ;

84

85 carry_out <= int_output (bits + 1) ;

86 output <= int_output (bits downto 1) ;

87 end process ;

88

89 end architecture basic ;

90

91

E.4. Source code of clock.vhd
1

2 -- Clock processes

3

4 -- The clock controller is part of the debugging system.

5 -- The clock can be run slowly: the switch settings control the speed.

6 clock_controller : process (switches , fast_clock ,

7 button_clock_event , slow_clock) is

8 begin

9 if (fast_clock = ’1’)

10 and (fast_clock’event)

11 then

12 button_clock_event_clear_1 <= ’0’ ;

13 reset <= ’0’ ;

14 run_single_instruction <= ’0’ ;

15

16 case switches (6 downto 5) is

17 when "00" =>

18 -- Reset the processor.

19 reset <= ’1’ ;

20 clock <= not clock ;

21 when "01" =>

22 -- Advance to the next clock edge on each button press

23 if (button_clock_event = ’1’)

79

24 then

25 clock <= not clock ;

26 button_clock_event_clear_1 <= ’1’ ;

27 end if ;

28 when others =>

29 -- Run continuously at full-ish speed.

30 clock <= slow_clock (12) ;

31 end case ;

32 slow_clock <= slow_clock + 1 ;

33 end if ;

34 end process ;

35

36 -- This process debounces the button.

37 button_debouncer : process (fast_clock , button_clock_event_clear_1 ,

38 button_clock_event_clear_2 , button , last_button) is

39 begin

40 if (fast_clock = ’0’)

41 and (fast_clock’event)

42 then

43 if (button_clock_event_clear_1 = ’1’)

44 or (button_clock_event_clear_2 = ’1’)

45 then

46 button_clock_event <= ’0’ ;

47 end if ;

48

49 if ((button xor last_button) = ’1’)

50 then

51 -- Button just changed.

52 if (button_state_stable (

53 button_state_stable’length - 1) = ’1’)

54 then

55 -- button was stable. generate a clock event.

56 button_clock_event <= ’1’ ;

57 end if ;

58 button_state_stable <= (others => ’0’) ;

59 else

60 if (button_state_stable (

61 button_state_stable’length - 1) = ’0’)

62 then

63 button_state_stable <= button_state_stable + 1 ;

64 end if ;

65 end if ;

66 last_button <= button ;

67 end if ;

68 end process ;

69

E.5. Source code of debugging.vhd
1

2 led_display : entity seven_segment_driver(basic)

3 port map (clock => fast_clock ,

4 -- byte_to_output (4 downto 0) => state ,

5 -- byte_to_output (7 downto 5) => "000" ,

6 -- byte_to_output =>

7 -- data_register_2 (31 downto 24) ,

8 byte_to_output => led_display_word (15 downto 8) ,

9 blank_display => ’0’ ,

10 enable => ’1’ ,

11 led_output_pins => led_display_output) ;

12

13 right_led_display : entity seven_segment_driver(basic)

14 port map (clock => fast_clock ,

15 -- byte_to_output (7 downto 4) =>

16 -- call_stack_pointer ,

17 -- byte_to_output (3 downto 0) =>

18 -- data_register_2 (3 downto 0) ,

19 byte_to_output => led_display_word (7 downto 0) ,

20 blank_display => ’0’ ,

21 enable => ’1’ ,

22 led_output_pins => right_led_display_output) ;

23

24 led_display_mux : process (

80

25 switches , operand_address , operand_value ,

26 pc_register , instruction_register ,

27 register_file_address_out_x , register_file_address_out_y ,

28 register_file_data_out_x , register_file_data_out_y ,

29 immediate_data_reg , register_file_data_out_y ,

30 state , call_stack_at_ptr_minus_one ,

31 call_stack_pointer , clock ,

32 ea_move_destination_control , ccr , condition_true ,

33 last_output , debug_memory_out ,

34 operation_size) is

35 begin

36 case switches (4 downto 0) is

37 when "00000" =>

38 led_display_word <= operand_address (15 downto 0) ;

39 when "00001" =>

40 led_display_word <= operand_value (15 downto 0) ;

41 when "00010" =>

42 led_display_word <= pc_register (15 downto 0) ;

43 when "00011" =>

44 led_display_word <= instruction_register ;

45 when "00100" =>

46 led_display_word <= register_file_address_out_x (15 downto 0) ;

47 when "00101" =>

48 led_display_word <= register_file_data_out_x (15 downto 0) ;

49 when "00110" =>

50 led_display_word <= register_file_address_out_y (15 downto 0) ;

51 when "00111" =>

52 led_display_word <= register_file_address_out_y (31 downto 16) ;

53 when "01000" =>

54 led_display_word <= register_file_data_out_y (15 downto 0) ;

55 when "01001" =>

56 led_display_word <= register_file_data_out_y (31 downto 16) ;

57 when "01010" =>

58 led_display_word <= immediate_data_reg (15 downto 0) ;

59 when "01011" =>

60 led_display_word <= immediate_data_reg (31 downto 16) ;

61 when "01100" =>

62 led_display_word (state_register’length - 1 downto 0) <= state ;

63 led_display_word (15 downto state_register’length) <=

64 (others => ’0’) ;

65 when "01101" =>

66 led_display_word (state_register’length - 1 downto 0) <=

67 call_stack_at_ptr_minus_one ;

68 led_display_word (15 downto state_register’length) <=

69 (others => ’0’) ;

70 when "01110" =>

71 led_display_word (stack_pointer_register’length - 1 downto 0) <=

72 call_stack_pointer ;

73 led_display_word (7 downto stack_pointer_register’length) <=

74 (others => ’0’) ;

75 led_display_word (15 downto 8) <= ccr (7 downto 0) ;

76 when "01111" =>

77 led_display_word (15 downto 0) <= (others => ’0’) ;

78

79 led_display_word (15) <= condition_true ;

80 led_display_word (14) <=

81 ea_move_destination_control ;

82

83 case operation_size is

84 when BYTE =>

85 led_display_word (10 downto 8) <= "001" ;

86 when WORD =>

87 led_display_word (10 downto 8) <= "010" ;

88 when others =>

89 led_display_word (10 downto 8) <= "100" ;

90 end case ;

91

92 led_display_word (7 downto 0) <= last_output ;

93 when others =>

94 led_display_word (15 downto 12) <= switches (3 downto 0) ;

95 led_display_word (11 downto 8) <= (others => ’0’) ;

96 led_display_word (7 downto 0) <= debug_memory_out ;

97 end case ;

98 end process ;

81

99

100 light_1 <= ’1’ ;

101 light_2 <= clock ;

102 light_3 <= clock ;

103

E.6. Source code of do branch process.vhd
1

2 do_branch_process : process (instruction_register ,

3 carry , overflow , negative , zero) is

4 variable db : std_logic ;

5 begin

6 -- Examine the condition code. Only the top 3 bits need

7 -- to be examined because the lowest bit of the code means

8 -- "complement result".

9 case instruction_register (11 downto 9) is

10 when "001" => -- BHI, high

11 db := (not carry) and (not zero) ;

12 when "010" => -- BCC, carry clear

13 db := not carry ;

14 when "011" => -- BNE, not equal

15 db := not zero ;

16 when "100" => -- BVC, overflow clear

17 db := not overflow ;

18 when "101" => -- BPL, plus

19 db := not negative ;

20 when "110" => -- BGE, greater than or equal

21 db := (negative and overflow)

22 or ((not negative) and (not overflow)) ;

23 when "111" => -- BGT, greater than

24 db := (negative and overflow and (not zero))

25 or ((not negative) and (not overflow)

26 and (not zero)) ;

27 when others => -- BRA, branch always

28 db := ’1’ ;

29 end case ;

30

31 if (instruction_register (8) = ’1’)

32 then

33 -- Complement result of examination above.

34 db := not db ;

35 end if ;

36

37 condition_true <= db ;

38 end process do_branch_process ;

39

E.7. Source code of input.vhd
1 -- input.vhd

2 --

3 -- $Id: input.vhd,v 1.1 2003/01/17 15:18:39 jdw108 Exp jwhitham $

4

5 library ieee ;

6 use ieee . std_logic_1164 . all ;

7 use ieee . std_logic_arith . all ;

8 use ieee . std_logic_unsigned . all ;

9 use m68k_types . all ;

10

11 entity state_machine is

12 port (fast_clock : in std_logic ;

13 button : in std_logic ;

14 led_display_output : out std_logic_vector (6 to 19) ;

15 right_led_display_output : out std_logic_vector (6 to 19) ;

16 switches : in std_logic_vector (6 downto 0) ;

17 light_1 : out std_logic ;

18 light_2 : out std_logic ;

19 light_3 : out std_logic) ;

20 end entity state_machine ;

21

82

22 architecture basic of state_machine is

23

24 -- Include signal definition code

25

26 INCLUDE clock.s.vhd

27 INCLUDE alu.s.vhd

28 INCLUDE alu_muxes.s.vhd

29 INCLUDE debugging.s.vhd

30 INCLUDE do_branch_process.s.vhd

31 INCLUDE ea_mode_mux_process.s.vhd

32 INCLUDE memory.s.vhd

33 INCLUDE operation_size_control_process.s.vhd

34 INCLUDE register_file.s.vhd

35 INCLUDE state_machine_controller.s.vhd

36 INCLUDE defaults.s.vhd

37 INCLUDE restore_pc_after_immediate_fetch.s.vhd

38

39 -- Optimisation code

40 INSERT OPTIMISATION alu_internal_op

41 INSERT OPTIMISATION ea_mode

42 INSERT OPTIMISATION ea_reg

43

44 begin

45

46 -- Code for CPU components

47

48 INCLUDE clock.vhd

49 INCLUDE alu.vhd

50 INCLUDE alu_muxes.vhd

51 INCLUDE debugging.vhd

52 INCLUDE do_branch_process.vhd

53 INCLUDE ea_mode_mux_process.vhd

54 INCLUDE memory.vhd

55 INCLUDE operation_size_control_process.vhd

56 INCLUDE register_file.vhd

57 INCLUDE restore_pc_after_immediate_fetch.vhd

58

59 state_machine_process : process (

60

61 INCLUDE state_machine_sensitivity_list.vhd

62

63 state , clock) is

64

65 begin

66

67 INCLUDE defaults.vhd

68

69 INSERT STATE MACHINE

70

71 end process state_machine_process ;

72

73 instruction_decoder : process (instruction_register) is

74 variable ir : word_register ;

75 begin

76 ir := instruction_register ;

77 INSERT INSTRUCTION DECODER

78 end process instruction_decoder ;

79

80 INCLUDE state_machine_controller.vhd

81

82 end architecture basic ;

83

E.8. Source code of memory.vhd
1

2 rom : entity program_rom

3 port map (address => memory_address ,

4 data => rom_output ,

5 clock => clock) ; -- memory access in +ve cycle

6

7 ram : entity dp_ram

8 generic map (address_width => 12 , -- 4K RAM

83

9 data_width => 8)

10 port map (clock => clock , -- memory access in +ve cycle

11 write => ram_write_enable ,

12 address1 => memory_address (11 downto 0) ,

13 address2 (3 downto 0) => switches (3 downto 0) ,

14 address2 (11 downto 4) => "00000000" ,

15 data_in => memory_input ,

16 data_out1 => ram_output ,

17 data_out2 => debug_memory_out) ;

18

19 -- Memory map:

20 -- 0000-0fff ROM

21 -- 1000-1fff RAM

22 -- 8000 Output

23

24 memory_map_process : process (rom_output ,

25 ram_output , memory_address , clock ,

26 memory_write_enable , memory_input) is

27 begin

28 case memory_address (15 downto 12) is

29 when "0000" => memory_output <= rom_output ;

30 ram_write_enable <= ’0’ ;

31

32 when "0001" => memory_output <= ram_output ;

33 ram_write_enable <= memory_write_enable ;

34

35 when "1000" => memory_output <= (others => ’0’) ;

36 if (memory_write_enable = ’1’)

37 and (memory_address (11 downto 0) =

38 conv_std_logic_vector (0 , 12))

39 then

40 -- memory_input contains the

41 -- data to be output.

42 if (clock = ’1’)

43 and (clock’event)

44 then

45 last_output <= memory_input ;

46 end if ;

47 end if ;

48 ram_write_enable <= ’0’ ;

49

50 when others => memory_output <= (others => ’0’) ;

51 ram_write_enable <= ’0’ ;

52 end case ;

53 end process memory_map_process ;

54

55 memory_address_mux : process (mar_source ,

56 pc_register , operand_address) is

57 begin

58 case mar_source is

59 when PC_TO_MAR =>

60 memory_address <= pc_register ;

61 when others => -- OA_TO_MAR

62 memory_address <= operand_address ;

63 end case ;

64 end process memory_address_mux ;

65

66 memory_output_latch : process (clock , memory_output) is

67 begin

68 if (clock = ’0’)

69 and (clock’event)

70 then

71 last_memory_output <= memory_output ;

72 end if ;

73 end process memory_output_latch ;

74

75 memory_input_mux : process (mdr_source ,

76 operand_value) is

77 begin

78 case mdr_source is

79 when OV_0_TO_MDR =>

80 memory_input <= operand_value (7 downto 0) ;

81 memory_write_enable <= ’1’ ;

82 when OV_1_TO_MDR =>

84

83 memory_input <= operand_value (15 downto 8) ;

84 memory_write_enable <= ’1’ ;

85 when OV_2_TO_MDR =>

86 memory_input <= operand_value (23 downto 16) ;

87 memory_write_enable <= ’1’ ;

88 when OV_3_TO_MDR =>

89 memory_input <= operand_value (31 downto 24) ;

90 memory_write_enable <= ’1’ ;

91 when others =>

92 -- Writing is turned off, so the source of memory_input

93 -- is unimportant. Choose something that has been used

94 -- before to simplify this mux.

95 memory_input <= operand_value (31 downto 24) ;

96 memory_write_enable <= ’0’ ;

97 end case ;

98 end process memory_input_mux ;

99

100 register_transfers : process (ir_source ,

101 clock , last_memory_output , operand_value_source ,

102 alu_output , immediate_data_source , pc_source ,

103 operand_address , operand_address_source) is

104 begin

105 -- The data that is transfered from memory MUST have been

106 -- fetched on the previous clock cycle. If it was fetched

107 -- earlier or later than that, it won’t be available.

108 if (clock = ’1’)

109 and (clock’event)

110 then

111 case ir_source is

112 when MDR_TO_IR_1 =>

113 instruction_register (15 downto 8)

114 <= last_memory_output ;

115 when MDR_TO_IR_0 =>

116 instruction_register (7 downto 0)

117 <= last_memory_output ;

118 when others => null ;

119 end case ;

120

121 case operand_value_source is

122 when MDR_TO_OV_3 =>

123 operand_value (31 downto 24)

124 <= last_memory_output ;

125 when MDR_TO_OV_2 =>

126 operand_value (23 downto 16)

127 <= last_memory_output ;

128 when MDR_TO_OV_1 =>

129 operand_value (15 downto 8)

130 <= last_memory_output ;

131 when MDR_TO_OV_0 =>

132 operand_value (7 downto 0)

133 <= last_memory_output ;

134 when ALU_TO_OV =>

135 operand_value <= alu_output ;

136 when others => null ;

137 end case ;

138

139 case immediate_data_source is

140 when MDR_TO_IDR_3 =>

141 immediate_data_reg (31 downto 24)

142 <= last_memory_output ;

143 when MDR_TO_IDR_2 =>

144 immediate_data_reg (23 downto 16)

145 <= last_memory_output ;

146 when MDR_TO_IDR_1 =>

147 immediate_data_reg (15 downto 8)

148 <= last_memory_output ;

149 when MDR_TO_IDR_0 =>

150 immediate_data_reg (7 downto 0)

151 <= last_memory_output ;

152 when MDR_TO_IDR_1_SE =>

153 immediate_data_reg (31 downto 16)

154 <= (others => last_memory_output (7)) ;

155 immediate_data_reg (15 downto 8)

156 <= last_memory_output ;

85

157 when MDR_TO_IDR_0_SE =>

158 immediate_data_reg (31 downto 8)

159 <= (others => last_memory_output (7)) ;

160 immediate_data_reg (7 downto 0)

161 <= last_memory_output ;

162 when others => null ;

163 end case ;

164

165 case pc_source is

166 when ALU_TO_PC =>

167 pc_register <= alu_output ;

168 when others => null ;

169 end case ;

170

171 case operand_address_source is

172 when ALU_TO_OA =>

173 operand_address <= alu_output ;

174 when MDR_TO_OA_3 =>

175 operand_address (31 downto 24) <= last_memory_output ;

176 when MDR_TO_OA_2 =>

177 operand_address (23 downto 16) <= last_memory_output ;

178 when MDR_TO_OA_1_SE =>

179 operand_address (31 downto 16) <=

180 (others => last_memory_output (7)) ;

181 operand_address (15 downto 8) <= last_memory_output ;

182 when MDR_TO_OA_1 =>

183 operand_address (15 downto 8) <= last_memory_output ;

184 when MDR_TO_OA_0 =>

185 operand_address (7 downto 0) <= last_memory_output ;

186 when others => null ;

187 end case ;

188 end if ;

189 end process register_transfers ;

190

E.9. Source code of operation size control process.vhd
1

2 operation_size_control_process : process (clock ,

3 operation_size_control , instruction_register) is

4 begin

5 if (clock = ’1’)

6 and (clock’event)

7 then

8 case operation_size_control is

9 when SET_TO_BYTE =>

10 operation_size <= BYTE ;

11 when SET_TO_WORD =>

12 operation_size <= WORD ;

13 when SET_TO_DWORD =>

14 operation_size <= DWORD ;

15 when SET_TO_IR =>

16 case instruction_register (7 downto 6) is

17 when "00" => -- Byte size.

18 operation_size <= BYTE ;

19 when "01" => -- Word size.

20 operation_size <= WORD ;

21 when others => -- DWord size.

22 operation_size <= DWORD ;

23 end case ;

24 when others =>

25 null ;

26 end case ;

27 end if ;

28 end process operation_size_control_process ;

29

E.10. Source code of register file.vhd
1

2

86

3

4 data_register_file : entity dp_ram

5 generic map (address_width => 3 , -- 8 x 32

6 data_width => 32)

7 port map (clock => clock ,

8 write => reg_update_data_x ,

9 address1 => register_file_address_x ,

10 address2 => register_file_address_y ,

11 data_in => data_regs_in ,

12 data_out1 => register_file_data_out_x ,

13 data_out2 => register_file_data_out_y) ;

14

15 address_register_file : entity dp_ram

16 generic map (address_width => 3 , -- 8 x 32

17 data_width => 32)

18 port map (clock => clock ,

19 write => reg_update_address_x ,

20 address1 => register_file_address_x ,

21 address2 => register_file_address_y ,

22 data_in => address_regs_in ,

23 data_out1 => register_file_address_out_x ,

24 data_out2 => register_file_address_out_y) ;

25

26 -- The register numbers, x and y, are chosen here. #

27 register_file_source_mux : process (register_file_source_x ,

28 register_file_source_y ,

29 instruction_register , ea_reg) is

30 begin

31 case register_file_source_x is

32 when RF_X_EA_REG =>

33 register_file_address_x <= ea_reg ;

34 when RF_X_FORCE_TO_SP =>

35 register_file_address_x <= "111" ;

36 when RF_X_11_TO_9_FIELD =>

37 register_file_address_x <=

38 instruction_register (11 downto 9) ;

39 when others => -- RF_X_2_TO_0_FIELD =>

40 register_file_address_x <=

41 instruction_register (2 downto 0) ;

42 end case ;

43

44 case register_file_source_y is

45 when RF_Y_FORCE_TO_SP =>

46 register_file_address_y <= "111" ;

47 when RF_Y_11_TO_9_FIELD =>

48 register_file_address_y <=

49 instruction_register (11 downto 9) ;

50 when others => -- RF_Y_2_TO_0_FIELD =>

51 register_file_address_y <=

52 instruction_register (2 downto 0) ;

53 end case ;

54 end process register_file_source_mux ;

55

56 -- The input to the register file is basically alu_output. However,

57 -- if a single word is written to a register, the high word is unchanged.

58 -- The following code supports this

59 register_file_input : process (alu_output , operation_size ,

60 reg_update_override_size ,

61 register_file_address_out_x ,

62 register_file_data_out_x) is

63 begin

64 if (reg_update_override_size = ’1’)

65 or (operation_size = DWORD)

66 then

67 -- Treat as a DWORD

68 address_regs_in <= alu_output ;

69 data_regs_in <= alu_output ;

70 else

71 if (operation_size = BYTE)

72 then

73 address_regs_in (31 downto 8) <=

74 (others => alu_output (7)) ;

75 address_regs_in (7 downto 0) <=

76 alu_output (7 downto 0) ;

87

77 data_regs_in (31 downto 8) <=

78 (others => alu_output (7)) ;

79 data_regs_in (7 downto 0) <=

80 alu_output (7 downto 0) ;

81 else

82 address_regs_in (31 downto 16) <=

83 (others => alu_output (15)) ;

84 address_regs_in (15 downto 0) <=

85 alu_output (15 downto 0) ;

86 data_regs_in (31 downto 16) <=

87 (others => alu_output (15)) ;

88 data_regs_in (15 downto 0) <=

89 alu_output (15 downto 0) ;

90 end if ;

91 end if ;

92 end process register_file_input ;

93

E.11. Source code of seven segment driver.vhd
1

2 library ieee ;

3 use ieee . std_logic_1164 . all ;

4

5 entity seven_segment_driver is

6 port (clock : in std_logic ;

7 byte_to_output : in std_logic_vector (7 downto 0) ;

8 blank_display : in std_logic ;

9 enable : in std_logic ;

10 led_output_pins : out std_logic_vector (6 to 19)) ;

11 end entity seven_segment_driver ;

12

13 architecture basic of seven_segment_driver is

14 subtype ad is std_logic_vector (1 to 4) ;

15 subtype dt is std_logic_vector (1 to 7) ;

16 begin

17 ssd_process : for digit in 0 to 1 generate

18 process (byte_to_output , clock , blank_display , enable) is

19 variable uout : dt ;

20 variable nibble : ad ;

21 begin

22 if (enable = ’1’)

23 and (clock = ’1’)

24 and (clock’event)

25 then

26 if (blank_display = ’1’)

27 then

28 uout := dt’("0000000") ;

29 else

30 nibble := byte_to_output(

31 ((digit * 4) + 3) downto (digit * 4)) ;

32 case nibble is

33 -- edcgfab

34 when ad’("0000") => uout := dt’("1110111") ; -- 0

35 when ad’("0001") => uout := dt’("0010001") ;

36 when ad’("0010") => uout := dt’("1101011") ;

37 when ad’("0011") => uout := dt’("0111011") ;

38 when ad’("0100") => uout := dt’("0011101") ; -- 4

39 when ad’("0101") => uout := dt’("0111110") ;

40 when ad’("0110") => uout := dt’("1111110") ;

41 when ad’("0111") => uout := dt’("0010011") ;

42 when ad’("1000") => uout := dt’("1111111") ; -- 8

43 when ad’("1001") => uout := dt’("0011111") ;

44 when ad’("1010") => uout := dt’("1011111") ;

45 when ad’("1011") => uout := dt’("1111100") ;

46 when ad’("1100") => uout := dt’("1101000") ; -- c

47 when ad’("1101") => uout := dt’("1111001") ;

48 when ad’("1110") => uout := dt’("1101110") ;

49 when others => uout := dt’("1001110") ; -- f

50 end case ;

51 end if ;

52 if (digit = 0)

53 then

88

54 -- less significant digit, i.e. digit on the right

55 led_output_pins (13 to 19) <= uout ;

56 else

57 -- more significant digit, i.e. digit on the left

58 led_output_pins (6 to 12) <= uout ;

59 end if ;

60 end if ;

61 end process ;

62 end generate ;

63

64 -- pin arrangements:

65 -- e1 - 6 -- e2 - 13

66 -- d1 - 7 -- d2 - 14

67 -- c1 - 8 -- c2 - 15

68 -- g1 - 9 -- g2 - 16

69 -- f1 - 10 -- f2 - 17

70 -- a1 - 11 -- a2 - 18

71 -- b1 - 12 -- b2 - 19

72

73 end architecture basic ;

74

E.12. Source code of state machine controller.vhd
1 -- state_machine_controller.vhd

2 --

3 --

4

5 call_stack_pointer_plus_one <= call_stack_pointer + 1 ;

6 call_stack_pointer_minus_one <= call_stack_pointer - 1 ;

7

8 state_plus_one <= state + 1 ;

9

10 call_stack_ram : entity dp_ram

11 generic map (address_width => stack_pointer_register’length ,

12 data_width => state_register’length)

13 port map (clock => clock , -- done in +ve cycle.

14 write => write_enable ,

15 address1 => call_stack_pointer_minus_one ,

16 address2 => call_stack_pointer_minus_one ,

17 data_in => value_to_be_stacked ,

18 data_out1 => call_stack_at_ptr_minus_one) ;

19

20 state_machine_controller : process (

21 call_requested , reset , return_requested , clock ,

22 state_plus_one , call_stack_at_ptr_minus_one ,

23 call_stack_pointer_minus_one ,

24 call_stack_pointer_plus_one ,

25 call_state) is

26 constant zero_call_state : state_register := (others => ’0’) ;

27 begin

28 if (clock’event)

29 and (clock = ’0’)

30 then

31 if (reset = ’1’)

32 then

33 state <= (others => ’0’) ;

34 value_to_be_stacked <= (others => ’0’) ;

35 write_enable <= ’0’ ;

36 call_stack_pointer <= (others => ’0’) ;

37 else

38 -- CALL stacking operations

39 value_to_be_stacked <= state_plus_one ;

40

41 if (call_requested = ’0’)

42 and (return_requested = ’0’)

43 then

44 -- CLOCK - just go to next state.

45 state <= state_plus_one ;

46 write_enable <= ’0’ ;

47 elsif (call_requested = ’0’)

48 and (return_requested = ’1’)

49 then

89

50 -- Return

51 state <= call_stack_at_ptr_minus_one ;

52 call_stack_pointer <= call_stack_pointer_minus_one ;

53 write_enable <= ’0’ ;

54 elsif (call_requested = ’1’)

55 and (return_requested = ’0’)

56 then

57 -- a CALL

58 if (call_state = zero_call_state)

59 then

60 -- This is a CALL NOTHING statement.

61 -- This is a dummy call that means "just go to

62 -- the next state".

63 state <= state_plus_one ;

64 write_enable <= ’0’ ;

65 else

66 -- This is a CALL to a real state machine.

67 state <= call_state ;

68 call_stack_pointer <= call_stack_pointer_plus_one ;

69 write_enable <= ’1’ ;

70 end if ;

71 else

72 -- a JUMP. This is a call without a stack.

73 -- In the positive going clock cycle, we change

74 -- the state.

75 state <= call_state ;

76 write_enable <= ’0’ ;

77 end if ;

78 end if ;

79 end if ;

80 end process state_machine_controller ;

81

E.13. Source code of types.vhd
1 -- types.vhd

2 --

3 -- Global type and constant definitions.

4 --

5

6 library ieee ;

7 use ieee . std_logic_1164 . all ;

8 use ieee . std_logic_arith . all ;

9 use ieee . std_logic_unsigned . all ;

10

11 package m68k_types is

12

13 -- Register types

14 subtype byte_register is std_logic_vector (7 downto 0) ;

15 subtype word_register is std_logic_vector (15 downto 0) ;

16 subtype dword_register is std_logic_vector (31 downto 0) ;

17

18 -- ALU internal operation codes

19 type alu_internal_op_type is

20 (ALU_INT_OR , ALU_INT_AND , ALU_INT_SUB , ALU_INT_ADD ,

21 ALU_INT_EOR , ALU_INT_CMP , ALU_INT_REV_SUB , ALU_INT_REV_CMP) ;

22

23 end package m68k_types ;

24

E.14. Source code of xilinx dp ram.vhd
1

2 library ieee ;

3 use ieee . std_logic_1164 . all ;

4 use ieee . std_logic_arith . all ;

5 use ieee . std_logic_unsigned . all ;

6

7 entity dp_ram is

8 generic (address_width : integer := 5 ;

9 data_width : integer := 4) ;

90

10 port (clock : in std_logic ;

11 write : in std_logic ;

12 address1 : in std_logic_vector ((address_width - 1) downto 0) ;

13 address2 : in std_logic_vector ((address_width - 1) downto 0) ;

14 data_in : in std_logic_vector ((data_width - 1) downto 0) ;

15 data_out1 : out std_logic_vector ((data_width - 1) downto 0) ;

16 data_out2 : out std_logic_vector ((data_width - 1) downto 0)) ;

17 end dp_ram ;

18

19 architecture syn of dp_ram is

20 constant max_address : integer := (2 ** address_width) - 1 ;

21

22 type ram_type is array (max_address downto 0)

23 of std_logic_vector ((data_width - 1) downto 0) ;

24

25 signal RAM : ram_type ;

26 signal read_address1 : std_logic_vector ((address_width - 1) downto 0) ;

27 signal read_address2 : std_logic_vector ((address_width - 1) downto 0) ;

28 begin

29 ram_process : process (clock) is

30 begin

31 if (clock’event)

32 and (clock = ’1’)

33 then

34 if (write = ’1’)

35 then

36 RAM (conv_integer (address1)) <= data_in ;

37 end if;

38 read_address1 <= address1 ;

39 read_address2 <= address2 ;

40 end if ;

41 end process ;

42

43 data_out1 <= RAM (conv_integer (read_address1)) ;

44 data_out2 <= RAM (conv_integer (read_address2)) ;

45 end syn ;

46

F. Test Program sources

F.1. Source code of fib.c
1

2 int main ()

3 {

4 char * ptr = (char *) 0x8000 ;

5

6 while (1)

7 {

8 int a = 0 ;

9 int b = 1 ;

10 int current = 0 ;

11

12 do {

13 (* ptr) = (char) (current & 0xff) ;

14

15 current = a + b ;

16 a = b ;

17 b = current ;

18 } while (current <= 0x10000000) ;

19 }

20

21 }

22

F.2. Source code of fvt.s
1

2 #20

3 clrtestmemsize = 0x100

91

4 initialstack = 0x2000

5 outputptr = 0x8000

6 perbyte = 0x42

7

8 .text

9

10 # a0 = output ptr

11 movel #outputptr,%a0

12

13 moveb #10,repflag

14

15 repeat:

16

17 moveb #0x1,(%a0)

18 # tests for Link

19 movew #initialstack,%a7

20 movew #0x1234,%d2

21 movel %d2,%a2

22 movel #0x12345678,initialstack-4

23

24 moveb #0x2,(%a0)

25

26 # sp = initialstack. frame ptr = 0x1234

27 linkw %a2,#-40

28

29 moveb #0x3,(%a0)

30

31 # Check SP = (initialstack - 4) - 40

32 movel %a7,%d3

33 cmpl #initialstack-44,%d3

34 bne fail

35

36 moveb #0x4,(%a0)

37

38 # Check (initialstack-4) = 0x1234

39 cmpl (initialstack-4),%d2

40 bne fail

41

42 moveb #0x5,(%a0)

43

44 # Check frame ptr = initialstack-4

45 movel %a2,%d3

46 cmpl #initialstack-4,%d3

47 bne fail

48

49 # The Link instruction worked correctly!

50

51 moveb #0x6,(%a0)

52

53 # Now, unlink

54

55 unlk %a2

56

57 moveb #0x7,(%a0)

58

59 # Has SP been restored?

60 movel #initialstack,%d3

61 cmpl %a7,%d3

62 bne fail

63

64 moveb #0x8,(%a0)

65

66 # Has the frame ptr been restored?

67 cmpl %a2,%d2

68 bne fail

69

70 # Now, JSR and RTS

71 moveb #0x9,(%a0)

72 jsr testprocedure

73

74 returnpoint:

75

76 # And JMP

77 jmp ooh

92

78

79 # Should never get here:

80 moveb #0x13,(%a0)

81 bra fail

82

83 ooh:

84

85 moveb #0x14,(%a0)

86

87 # Now test DBCC and postinc

88

89 move #clrtestmem,%a5

90 move #clrtestmemsize-1,%d3

91

92 moveb #0x15,(%a0)

93

94 filler:

95 moveb #perbyte,(%a5)+

96 dbra %d3,filler

97

98 moveb #0x16,(%a0)

99

100 # Is %d3 = -1?

101 cmpw #-1,%d3

102 bne fail

103

104 moveb #0x17,(%a0)

105

106 # Is %a5 correct?

107

108 movel %a5,%d4

109 cmpl #clrtestmem+clrtestmemsize,%d4

110 bne fail

111

112 moveb #0x18,(%a0)

113

114 # Is every value in the range correct?

115 jsr checkrange

116

117 # sum is in d7

118

119 moveb #0x19,(%a0)

120

121 cmpl #(perbyte * clrtestmemsize),%d7

122 bne fail

123

124 moveb #0x20,(%a0)

125

126 # What about after a CLRB?

127

128 clrb clrtestmem+3

129

130 moveb #0x21,(%a0)

131

132 jsr checkrange

133

134 moveb #0x22,(%a0)

135 cmpl #((perbyte * clrtestmemsize) - perbyte),%d7

136 bnes fail

137

138 # A CLRL?

139 clrl clrtestmem+16

140

141 moveb #0x23,(%a0)

142

143 jsr checkrange

144

145 moveb #0x24,(%a0)

146 cmpl #((perbyte * clrtestmemsize) - (perbyte * 5)),%d7

147 bnes fail

148

149 moveb #0x25,(%a0)

150

151 # Test LEA

93

152 # .word 0x4de8

153 # .word 28

154 # 0100 1101 1110 1000

155

156 lea %a0@(28),%a6

157

158 moveb #0x26,(%a0)

159

160 movel #(outputptr + 28),%d2

161 cmpl %a6,%d2

162 bnes fail

163

164 moveb #0x27,(%a0)

165

166 # Test PEA

167 pea %a0@(28)

168

169 moveb #0x28,(%a0)

170

171 # Check SP

172 movel #(initialstack - 4),%d3

173 cmpl %a7,%d3

174 bnes fail

175

176 moveb #0x29,(%a0)

177

178 # Check (SP)

179 cmpl (%a7),%d2

180 bnes fail

181

182 moveb #0x30,(%a0)

183

184 # Subtract 2 from SP.

185

186 moveq #2,%d2

187 suba %d2,%a7

188

189 # Test SCC

190 seq (%a7)

191 moveq #0,%d2

192 cmpb (%a7),%d2

193 bnes fail

194

195 moveb #0x31,(%a0)

196

197 sne (%a7)

198 moveq #-1,%d2

199 cmpb (%a7),%d2

200 bnes fail

201

202 moveb #0x32,(%a0)

203

204 # Has this been run before?

205 # Repeat the test until repflag = 0

206 subqb #1,repflag

207 bge repeat

208

209 moveb #0xa5,(%a0)

210

211 # This is actually a pass.

212 # But we go into the fail loop anyway with a success code (a5)

213

214 fail:

215

216 movel %a7,spout

217 movel %a6,fpout

218 movel %d3,d3out

219 movel %d4,d4out

220 failloop:

221 bras failloop

222

223 testprocedure:

224 moveb #0x10,(%a0)

225

94

226 # Check the stack pointer is correct

227 movel %a7,%d3

228 cmpl #initialstack-4,%d3

229 bnes fail

230

231 moveb #0x11,(%a0)

232

233 # Check the return point has been stacked correctly

234 movel (%a7),%d3

235 cmpl #returnpoint,%d3

236 bnes fail

237

238 moveb #0x12,(%a0)

239 rts

240

241 checkrange:

242 moveql #0,%d7

243 moveql #0,%d5

244 move #clrtestmemsize+clrtestmem,%d6

245 move #clrtestmem,%a6

246 checkrange_loop:

247 moveb (%a6),%d5

248 addl %d5,%d7

249 addq #1,%a6

250 cmpl %a6,%d6

251 bgts checkrange_loop

252 rts

253

254 .bss

255 regdumpspace:

256 spout:

257 .space 4

258 fpout:

259 .space 4

260 d3out:

261 .space 4

262 d4out:

263 .space 4

264 clrtestmem:

265 .space clrtestmemsize

266 repflag:

267 .space 1

268

F.3. Source code of 23instructions.s
1 _start:

2 addw a1,a2

3 bra _start

4 subl d6,d6

5 adda a1,a2

6 cmpa a2,a3

7 addi #127,d4

8 cmpi #222,_start

9 cmpb d5,d6

10 addq #2,d7

11 clr d1

12 dbcc d4,_start

13 jmp _start

14 jsr _start

15 lea _start,a4

16 link a5,#8

17 unlk a1

18 nop

19 pea _start

20 rts

21 scc d6

22 tst d1

23 move %a2,%a3

24 moveq #0,%d3

25

95

G. State Machine Compiler sources

G.1. Source code of alu optimisation.cc
1

2 #include "alu_optimisation.h"

3

4 /** ALU_Optimisation constructor

5 *

6 */

7 ALU_Optimisation :: ALU_Optimisation () :

8 Basic_Optimisation ("alu_internal_op" , "alu_internal_op_type")

9 {

10 /* These ALU modes are always needed */

11 Add_Assert ("ALU_INT_ADD") ;

12 Add_Assert ("ALU_INT_SUB") ;

13 Add_Assert ("ALU_INT_REV_SUB") ;

14 }

15

16 /** Notify

17 *

18 * This method is called with every possible opcode containing an

19 * ALU operation within the program. It allows the ALU to be optimised,

20 * removing unnecessary operations.

21 */

22 void ALU_Optimisation :: Notify (unsigned opcode , char subtype)

23 {

24 switch (subtype)

25 {

26 case ’+’ :

27 case ’-’ : /* These are always needed. */

28 break ;

29 case ’c’ : Add_Assert ("ALU_INT_CMP") ;

30 Add_Assert ("ALU_INT_REV_CMP") ;

31 break ;

32 case ’^’ : Add_Assert ("ALU_INT_EOR") ;

33 break ;

34 case ’&’ : Add_Assert ("ALU_INT_AND") ;

35 break ;

36 case ’|’ : Add_Assert ("ALU_INT_OR") ;

37 break ;

38 default : assert (0) ;

39 }

40 }

41

G.2. Source code of alu optimisation.h
1 #ifndef ALU_OPTIMISATION_H

2 #define ALU_OPTIMISATION_H

3

4 #include "basic_optimisation.h"

5

6 class ALU_Optimisation : public Basic_Optimisation

7 {

8 public:

9 ALU_Optimisation () ;

10

11 virtual void Notify (unsigned opcode , char subtype) ;

12 } ;

13

14 #endif

15

G.3. Source code of control.cc
1

2 #include <stdio.h>

3 #include <regex.h>

4 #include <string.h>

5 #include <stdlib.h>

96

6 #include <assert.h>

7 #include <limits.h>

8

9 #include "utils.h"

10 #include "control.h"

11 #include "definitions.h"

12

13 /****** Control public methods ******/

14

15 /** Control constructor

16 *

17 * A new object is created to control the various components of the program.

18 * This object is fed a series of settings from a configuration, and

19 * when Generate_VHDL is called, it produces the VHDL to represent the

20 * processor.

21 */

22 Control :: Control (const char * opcode_map_file ,

23 const char * state_machine_directory ,

24 const char * root_vhdl_input_file ,

25 const char * vhdl_input_directory ,

26 const char * initial_state_machine ,

27 const char * required_opcode_list_file)

28 {

29 /* First compile the regular expressions used in parsing the VHDL */

30 int rc = regcomp (& include_regex ,

31 "^[\t]*INCLUDE +([^ \t]+)[\t]*" , REG_EXTENDED) ;

32 assert (rc == 0) ;

33

34 rc = regcomp (& insert_subtypes_regex ,

35 "^[\t]*INSERT +SUBTYPES" , REG_EXTENDED) ;

36 assert (rc == 0) ;

37

38 rc = regcomp (& insert_state_machine_regex ,

39 "^[\t]*INSERT +STATE +MACHINE" , REG_EXTENDED) ;

40 assert (rc == 0) ;

41

42 rc = regcomp (& insert_instruction_decoder_regex ,

43 "^[\t]*INSERT +INSTRUCTION +DECODER" , REG_EXTENDED) ;

44 assert (rc == 0) ;

45

46 rc = regcomp (& insert_optimisation_regex ,

47 "^[\t]*INSERT +OPTIMI[ZS]ATION +([^ \t]+)[\t]*" , REG_EXTENDED) ;

48 assert (rc == 0) ;

49

50 /* This regex is used for parsing objdump/opcode list

51 * files (Require_Opcodes_In_File) */

52 rc = regcomp (& require_opcode_regex ,

53 require_opcode_expression , REG_EXTENDED | REG_ICASE) ;

54 assert (rc == 0) ;

55

56

57

58 opcode_database . Read_Opcode_Map (opcode_map_file) ;

59 optimisation_manager . Read_Opcode_Map (opcode_map_file) ;

60

61 /* Read in state machines */

62 sm_loader . Add_State_Machine_Directory (state_machine_directory) ;

63

64 Require_Opcodes_In_File (required_opcode_list_file) ;

65 /* This will have to change: */

66 //opcode_database . Require_Opcode (0x6000) ; // BRA

67 //opcode_database . Require_Opcode (0x5280) ; // ADDQ

68 //opcode_database . Require_Opcode (0x2001) ; // some move

69

70 /* Use dependencies to calculate which microcode is needed to

71 * run the program */

72 sm_loader . Require_Microsubs

73 (opcode_database . List_Required_Micro_Subroutines ()) ;

74

75 /* Build the master state machine for use as microcode. */

76 master_sm = sm_loader . Build_Master_Machine (initial_state_machine) ;

77

78 /* Finalise the opcode database, linking the instruction decoder

79 * to the microcode */

97

80 opcode_database . Finalise_DFA (master_sm) ;

81

82 this -> vhdl_input_directory = Copy_String (vhdl_input_directory) ;

83 this -> root_vhdl_input_file = Copy_String (root_vhdl_input_file) ;

84 }

85

86 /** Control destructor

87 */

88 Control :: ~Control ()

89 {

90 regfree (& include_regex) ;

91 regfree (& insert_subtypes_regex) ;

92 regfree (& insert_state_machine_regex) ;

93 regfree (& insert_instruction_decoder_regex) ;

94 regfree (& insert_optimisation_regex) ;

95 regfree (& require_opcode_regex) ;

96

97 delete [] root_vhdl_input_file ;

98 delete [] vhdl_input_directory ;

99 }

100

101 /** Generate_VHDL

102 *

103 * VHDL is generated and sent to the specified file.

104 */

105 void Control :: Generate_VHDL (FILE * output)

106 {

107 Add_VHDL_Source_File (root_vhdl_input_file , output) ;

108 }

109

110 /****** Control private methods ******/

111

112 /** Add_VHDL_Source_File

113 *

114 * Recursively process the given VHDL source file, inserting the

115 * appropriate information in the right places. This procedure

116 * must be passed a finalised master state machine and opcode database.

117 */

118 void Control :: Add_VHDL_Source_File (const char * filename , FILE * output)

119 {

120 FILE * input ;

121

122 regmatch_t matches [3] ;

123 char str [MAX_LINE_LEN + 1] ;

124

125 /* First try to open the filename using the default path

126 * provided to the constructor */

127 char * abs_filename = new char [strlen (vhdl_input_directory) +

128 strlen (filename) + 2] ;

129 strcpy (abs_filename , vhdl_input_directory) ;

130 strcat (abs_filename , "/") ;

131 strcat (abs_filename , filename) ;

132 input = fopen (abs_filename , "rt") ;

133

134 if (input == 0L)

135 {

136 /* Now try reading it from the current directory */

137 strcpy (abs_filename , filename) ;

138 input = fopen (abs_filename , "rt") ;

139 }

140

141 MESSAGE2 ("Reading VHDL source ’%s’.\n" , abs_filename) ;

142

143 if (input == 0L)

144 {

145 throw new File_Access_Exception (filename) ;

146 }

147

148 while (fgets (str , MAX_LINE_LEN , input) != NULL)

149 {

150 Remove_Trailing_Newlines (str) ;

151

152 if (regexec (& include_regex , str , 2 , matches , 0) == 0)

153 {

98

154 /* An include statement. Read the specified file. */

155 char * new_filename = Get_Regex_Match (str , & matches [1]) ;

156

157 Add_VHDL_Source_File (new_filename , output) ;

158

159 delete [] new_filename ;

160 } else if (regexec (& insert_subtypes_regex , str , 1 ,

161 matches , 0) == 0)

162 {

163 /* This means that two subtype definitions should

164 be added to the VHDL. They define state_register

165 and stack_pointer_register */

166

167 fprintf (output ,

168 "\tsubtype state_register is std_logic_vector "

169 "(%d downto 0) ;\n"

170 "\tsubtype stack_pointer_register is std_logic_vector "

171 "(%d downto 0) ;\n" ,

172 master_sm -> Get_Width_Of_State_Number () - 1 ,

173 Get_Number_Of_Bits_Needed_For (STACK_SIZE - 1) - 1) ;

174 } else if (regexec (& insert_optimisation_regex , str , 2 ,

175 matches , 0) == 0)

176 {

177 /* An optimisation statement. */

178 char * ot = Get_Regex_Match (str , & matches [1]) ;

179

180 optimisation_manager . Generate_VHDL (output ,

181 Optimisation_Record (ot)) ;

182

183 delete [] ot ;

184 } else if (regexec (& insert_state_machine_regex , str , 1 ,

185 matches , 0) == 0)

186 {

187 /* This means that the state machine defintion

188 should be added to the VHDL. */

189

190 master_sm -> Compile_Machine (output) ;

191 } else if (regexec (& insert_instruction_decoder_regex , str , 1 ,

192 matches , 0) == 0)

193 {

194 /* This means that the instruction decoder

195 should be added to the VHDL. */

196

197 opcode_database . Generate_VHDL (output) ;

198 } else {

199 /* The line will be added to the outgoing VHDL if it

200 has any non-whitespace characters on it. */

201

202 if (String_Contains_Non_Whitespace (str))

203 {

204 fputs (str , output) ;

205 fputs ("\n" , output) ;

206 }

207 }

208 }

209 fclose (input) ;

210

211 delete [] abs_filename ;

212 }

213

214 /** Require_Opcodes_In_File

215 *

216 * For each opcode listed in the file, run Require_Opcode.

217 * The file may take one of the following formats:

218 * GNU objdump output

219 * a list of opcodes, one per line, in hex format.

220 */

221 void Control :: Require_Opcodes_In_File (const char * file)

222 {

223 FILE * input ;

224 regmatch_t matches [4] ;

225 char str [MAX_LINE_LEN + 1] ;

226 int count = 0 ;

227 int line_no = 0 ;

99

228

229 input = fopen (file , "rt") ;

230

231 if (input == 0L)

232 {

233 throw new File_Access_Exception (file) ;

234 }

235

236 MESSAGE ("Reading required opcodes list file ’%s’\n" , file) ;

237 while (fgets (str , MAX_LINE_LEN , input) != NULL)

238 {

239 line_no ++ ;

240

241 Remove_Trailing_Newlines (str) ;

242 Remove_Whitespace_From_Ends (str) ;

243

244 if (regexec (& require_opcode_regex , str , 3 , matches , 0) == 0)

245 {

246 /* Ah, a match. The 2nd field should be the opcode */

247 char * opcode_str = Get_Regex_Match (str , & matches [2]) ;

248 int opcode = strtol (opcode_str , 0L , 16) ;

249

250 opcode_database . Require_Opcode (opcode) ;

251

252 optimisation_manager . Notify (opcode) ;

253

254 count ++ ;

255

256 delete [] opcode_str ;

257 } else {

258 MESSAGE2 ("Unable to decode %s line %d: %s\n" ,

259 file , line_no , str) ;

260 }

261 }

262 fclose (input) ;

263

264 MESSAGE ("%d opcodes read.\n" , count) ;

265 if (count == 0)

266 {

267 throw new No_Opcodes_Read_Exception (file) ;

268 }

269 }

270

271 const char * Control :: require_opcode_expression =

272 "^([0-9a-f]+:[\t]+|0x|)([0-9a-f]{4})[\t]" ;

273

G.4. Source code of control.h
1 #ifndef CONTROL_H

2 #define CONTROL_H

3

4 #include <stdio.h>

5 #include <regex.h>

6

7 #include "state_machine.h"

8 #include "opcode_database.h"

9 #include "state_machine_loader.h"

10 #include "optimisation.h"

11

12 class Control

13 {

14 public:

15 Control (const char * opcode_map_file ,

16 const char * state_machine_directory ,

17 const char * root_vhdl_input_file ,

18 const char * vhdl_input_directory ,

19 const char * initial_state_machine ,

20 const char * required_opcode_list_file) ;

21 virtual ~Control () ;

22 void Generate_VHDL (FILE * output) ;

23

24 private:

100

25 void Add_VHDL_Source_File (const char * filename , FILE * output) ;

26 void Require_Opcodes_In_File (const char * file) ;

27

28 Opcode_Database opcode_database ;

29 State_Machine * master_sm ;

30 State_Machine_Loader

31 sm_loader ;

32 Optimisation_Manager

33 optimisation_manager ;

34 regex_t include_regex ;

35 regex_t insert_subtypes_regex ;

36 regex_t insert_state_machine_regex ;

37 regex_t insert_instruction_decoder_regex ;

38 regex_t insert_optimisation_regex ;

39 regex_t require_opcode_regex ;

40 const char * root_vhdl_input_file ;

41 const char * vhdl_input_directory ;

42

43 static const char * require_opcode_expression ;

44 } ;

45

46 #endif

47

G.5. Source code of main.cc
1

2 #include "opcode_database.h"

3 #include "state_machine_loader.h"

4 #include "exceptions.h"

5 #include "control.h"

6 #include "utils.h"

7 #include "settings.h"

8

9 int main (int argc , char * argv [])

10 {

11

12 try {

13 Settings * s ;

14

15 g_verbose_setting = VERBOSE_MEDIUM ;

16

17 MESSAGE (" ** State Machine Compiler **\n"

18 "Binary build time: " __TIME__ " " __DATE__ "\n\n") ;

19

20 /* Read the settings */

21 if (argc > 1)

22 {

23 s = new Settings (argv [1]) ;

24 if (argc > 2)

25 {

26 s -> Set_Required_Opcode_File (argv [2]) ;

27 }

28 } else {

29 s = new Settings ("smc.ini") ;

30 }

31

32 g_verbose_setting = s -> Get_Verbose_Level () ;

33

34 Control c (s -> Get_Opcode_Map_Filename () ,

35 s -> Get_State_Machine_Directory () ,

36 s -> Get_Root_VHDL_Input_Filename () ,

37 s -> Get_VHDL_Input_Directory () ,

38 s -> Get_Initial_State_Machine () ,

39 s -> Get_Required_Opcode_File ()) ;

40

41 FILE * fd = fopen (s -> Get_Output_Filename () , "wt") ;

42 if (fd == 0L)

43 {

44 throw new File_Access_Exception (s -> Get_Output_Filename ()) ;

45 }

46 c . Generate_VHDL (fd) ;

47 fclose (fd) ;

101

48

49 MESSAGE ("Completed successfully.\n") ;

50

51 delete s ;

52

53 return 0 ;

54 } catch (Basic_Exception * e)

55 {

56 MESSAGE ("An exception was thrown:\n") ;

57 e -> PrintMessage () ;

58

59 return 1 ;

60 }

61 }

62

G.6. Source code of ndfa dag.cc
1

2

3 #include <stdio.h>

4 #include <assert.h>

5

6 #include <set>

7 #include <algorithm>

8

9

10 #include "ndfa_dag.h"

11 #include "utils.h"

12

13

14

15 /****** NDFA_DAG public methods ******/

16

17 /** NDFA_DAG constructor

18 *

19 * This constructor produces an empty NDFA.

20 */

21 NDFA_DAG :: NDFA_DAG () : NDFA_Node (0)

22 {

23 MESSAGE4 ("Creating empty NDFA.\n") ;

24 is_accept_all_ndfa = false ;

25 }

26

27 /** NDFA_DAG constructor

28 *

29 * This constructor produces an NDFA that accepts all bit patterns.

30 * The accept state information is the one provided.

31 */

32 NDFA_DAG :: NDFA_DAG (Accept_State * asi) : NDFA_Node (0)

33 {

34 MESSAGE4 ("Creating accept-all NDFA.\n") ;

35

36 NDFA_Node * current_node ;

37

38 current_node = this ;

39

40 for (int i = 0 ; i < BITS_PER_OPCODE ; i ++)

41 {

42 accept_all_list [i] = current_node ;

43 current_node = current_node -> Add_Transition (true , true) ;

44 }

45

46 current_node -> Make_Accept_State (asi) ;

47

48 is_accept_all_ndfa = true ;

49 }

50

51

52

53 /** Reject_Pattern

54 *

55 * Makes the NDFA reject a particular bit pattern.

102

56 */

57 void NDFA_DAG :: Reject_Pattern (int start_bit , const char * pattern)

58 {

59 MESSAGE4 ("Rejecting bit pattern ’%s’ start %d.\n" ,

60 pattern , start_bit) ;

61

62 assert ((start_bit >= 0)

63 && (start_bit < BITS_PER_OPCODE)) ;

64

65 NDFA_Node * current_node ;

66 unsigned i ;

67

68 /* First add a series of transitions from the root to start_bit - 1,

69 * that will accept any pattern. As a special case, if this is an

70 * "accept-all" NDFA (created by the 2nd constructor), this set of

71 * transitions already exists, so we can use an entry in the

72 * accept_all_list. */

73

74 if (is_accept_all_ndfa)

75 {

76 current_node = accept_all_list [start_bit] ;

77 } else {

78 current_node = this ;

79

80 for (i = 0 ; i < (unsigned) start_bit ; i ++)

81 {

82 current_node = current_node -> Add_Transition (true , true) ;

83 }

84 }

85

86 /* Now add a series of transitions from start_bit - 1 to the end

87 * of the pattern that reject that specific pattern */

88 for (i = 0 ; i < strlen (pattern) ; i ++)

89 {

90 if (pattern [i] == ’0’)

91 {

92 current_node = current_node -> Add_Transition (true , false) ;

93 } else if (pattern [i] == ’1’)

94 {

95 current_node = current_node -> Add_Transition (false , true) ;

96 } else {

97 assert (0) ;

98 }

99 }

100

101 current_node -> Make_Reject_State () ;

102 }

103

104

105 /** Get_Accept_State

106 *

107 * Translate an opcode number into an accept state.

108 * If translation fails, 0 is returned.

109 */

110 Accept_State * NDFA_DAG :: Get_Accept_State (unsigned opcode)

111 {

112 assert (Is_Deterministic ()) ;

113

114 NDFA_Node * node = this ;

115

116 while ((node != 0L)

117 && (node -> Get_Accept_State () == 0L))

118 {

119 if ((opcode >> ((BITS_PER_OPCODE - 1) -

120 node -> Get_Test_Bit_Number ())) & 1)

121 {

122 node = node -> DFA_Transition (1) ;

123 } else {

124 node = node -> DFA_Transition (0) ;

125 }

126 }

127 if (node == 0L)

128 {

129 return 0L ;

103

130 } else {

131 return node -> Get_Accept_State () ;

132 }

133 }

134

135 /** Enable_Accept_State

136 *

137 * Translate an opcode number into an accept state. During the tree

138 * traversal, every tree node visited has it’s "visit" counter incremented.

139 * This tells the compression routines that this tree path will be needed.

140 * The accept state’s Enable method is called when it is reached.

141 * If no accept state is found, 0 is returned.

142 */

143 Accept_State * NDFA_DAG :: Enable_Accept_State (unsigned opcode)

144 {

145 assert (Is_Deterministic ()) ;

146

147 NDFA_Node * node = this ;

148

149 while ((node != 0L)

150 && (node -> Get_Accept_State () == 0L))

151 {

152 node -> Visit () ;

153

154 if ((opcode >> ((BITS_PER_OPCODE - 1) -

155 node -> Get_Test_Bit_Number ())) & 1)

156 {

157 node = node -> DFA_Transition (1) ;

158 } else {

159 node = node -> DFA_Transition (0) ;

160 }

161 }

162 if (node == 0L)

163 {

164 return 0L ;

165 } else {

166 node -> Visit () ;

167 node -> Get_Accept_State () -> Enable () ;

168 return node -> Get_Accept_State () ;

169 }

170 }

171

172

173 /** Generate_VHDL

174 *

175 * Produces VHDL, sent to the specified device, for the DFA,

176 * which is first checked for determinism.

177 */

178 void NDFA_DAG :: Generate_VHDL (FILE * fd)

179 {

180 assert (Is_Deterministic ()) ;

181 DFA_To_VHDL (this , fd , "") ;

182 }

183

184

185

186

187

188 /****** NDFA_DAG private methods ******/

189

190 void NDFA_DAG :: DFA_To_VHDL (NDFA_Node * root_node , FILE * fd ,

191 const char * indent)

192 {

193 if (root_node == 0L)

194 {

195 printf ("Fault 1\n") ;

196 }

197 assert (root_node != 0L) ;

198

199 char * new_indent = new char [strlen (indent) + 4] ;

200 int bit_num = (BITS_PER_OPCODE - 1) -

201 root_node -> Get_Test_Bit_Number () ;

202

203 strcpy (new_indent , indent) ;

104

204 strcat (new_indent , " ") ;

205

206 if (root_node -> Get_Accept_State () != 0L)

207 {

208 root_node -> Get_Accept_State () ->

209 Accept_State_To_VHDL (fd , indent) ;

210 } else {

211 /* Compressed DFA nodes always have two children */

212 fprintf (fd , "%sif ir (%d) = ’1’ then\n" , indent , bit_num) ;

213 DFA_To_VHDL (root_node -> DFA_Transition (1) , fd , new_indent) ;

214 fprintf (fd , "%selse --ir(%d)= ’0’\n" , indent , bit_num) ;

215 DFA_To_VHDL (root_node -> DFA_Transition (0) , fd , new_indent) ;

216 fprintf (fd , "%send if ;\n" , indent) ;

217 }

218 delete [] new_indent ;

219 }

220

221

G.7. Source code of ndfa dag.h
1

2

3 #ifndef NDFA_TREE_H

4 #define NDFA_TREE_H

5

6

7

8 #include "ndfa_node.h"

9 #include "ndfa_accept_state.h"

10

11

12 class NDFA_DAG : public NDFA_Node

13 {

14 public:

15 NDFA_DAG () ;

16 NDFA_DAG (Accept_State * accept_state) ;

17

18

19 void Reject_Pattern (int start_bit , const char * pattern) ;

20

21 Accept_State * Get_Accept_State (unsigned opcode) ;

22 Accept_State * Enable_Accept_State (unsigned opcode) ;

23

24 void Generate_VHDL (FILE * fd) ;

25

26

27 private:

28 void DFA_To_VHDL (NDFA_Node * root_node , FILE * fd ,

29 const char * indent) ;

30

31

32 NDFA_Node * actual_root ;

33 NDFA_Node * accept_all_list [BITS_PER_OPCODE] ;

34 bool is_accept_all_ndfa ;

35 } ;

36

37

38

39

40 #endif

41

G.8. Source code of ndfa node.cc
1

2 #include <stdio.h>

3 #include <assert.h>

4

5 #include <set>

6 #include <algorithm>

105

7

8 #include "ndfa_node.h"

9 #include "utils.h"

10

11 /****** NDFA_Node public methods ******/

12

13 /** NDFA_Node constructor

14 *

15 * A new node for an NDFA is produced. It is neither an accept nor

16 * reject state, and has no transitions. The bit number to be tested

17 * for the transitions is given as a parameter to the constructor.

18 */

19 NDFA_Node :: NDFA_Node (int test_bit_number)

20 {

21 assert ((test_bit_number >= 0)

22 && (test_bit_number < (BITS_PER_OPCODE + 1))) ;

23

24 accept_state = 0L ;

25 is_accept_state = false ;

26 is_reject_state = false ;

27 this -> test_bit_number = test_bit_number ;

28

29 for (int ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

30 {

31 transitions [ts] . clear () ;

32 }

33

34 is_deterministic = false ;

35

36 visits = 0 ;

37 }

38

39 /** NDFA_Node destructor

40 *

41 * The NDFA node is deleted along with all its children. All NDFA-specific

42 * memory is freed:- no attempt is made to free the accept state memory if

43 * any.

44 */

45 NDFA_Node :: ~NDFA_Node ()

46 {

47 Delete_Children () ;

48 }

49

50 /** Add_Transition

51 *

52 * Adds a transition from this node to a new one. The new node is

53 * returned. Parameters specify whether the transition is on ’0’,

54 * ’1’, or both.

55 */

56 NDFA_Node * NDFA_Node :: Add_Transition (bool transition_on_zero ,

57 bool transition_on_one)

58 {

59 assert (transition_on_zero || transition_on_one) ;

60

61 NDFA_Node * nn = new NDFA_Node (test_bit_number + 1) ;

62

63 if (transition_on_zero)

64 {

65 transitions [0] . insert (nn) ;

66 }

67 if (transition_on_one)

68 {

69 transitions [1] . insert (nn) ;

70 }

71

72 Check_For_Determinism () ;

73 return nn ;

74 }

75

76 /** Make_Reject_State

77 *

78 * Makes this node a reject state.

79 */

80 void NDFA_Node :: Make_Reject_State ()

106

81 {

82 is_reject_state = true ;

83 is_accept_state = false ;

84 Delete_Children () ;

85 Check_For_Determinism () ;

86 }

87

88 /** Make_Accept_State

89 *

90 * Makes this node an accept state.

91 * If this node is already an accept state, the new accept state

92 * information must be the same as the old. If it is not, an exception

93 * (SharedAcceptStateException) will be thrown.

94 * If this node is already a reject state, nothing happens. (Reject

95 * takes priority over accept).

96 */

97 void NDFA_Node :: Make_Accept_State (Accept_State * accept_info)

98 {

99 if (is_reject_state)

100 {

101 return ;

102 }

103

104 if (is_accept_state)

105 {

106 if (accept_state != accept_info)

107 {

108 assert (accept_state != 0L) ;

109 assert (accept_info != 0L) ;

110

111 /* An NDFA node cannot possibly be two different types of

112 accept states. This would mean that two opcodes had the

113 same bit pattern but a different meaning. */

114 throw new SharedAcceptStateException (

115 accept_state , accept_info) ;

116 }

117 }

118 is_accept_state = true ;

119 is_reject_state = false ;

120 accept_state = accept_info ;

121

122 Check_For_Determinism () ;

123 }

124

125 /** Merge_In

126 *

127 * The provided NDFA is copied into this one. A deep copy is made of all

128 * nodes in the 2nd NDFA, meaning it can be freely deleted. However,

129 * shallow copies are made of any accept_state records.

130 */

131 void NDFA_Node :: Merge_In (NDFA_Node * source_root ,

132 bool copy_reject_states)

133 {

134 NDFA_Node * new_ndfa_node ;

135

136 /* Copy an accept state from source to this, checking to ensure

137 * that an existing accept state is not overwritten. */

138 if (source_root -> is_accept_state)

139 {

140 Make_Accept_State (source_root -> accept_state) ;

141 }

142

143 /* Copy all transitions from source to target */

144 for (int ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

145 {

146 NDFA_Node_Set_Iterator iter ;

147 NDFA_Node * item ;

148

149 iter = source_root -> transitions [ts] . begin () ;

150

151 while (iter != source_root -> transitions [ts] . end ())

152 {

153 item = (* iter) ;

154

107

155 new_ndfa_node = new NDFA_Node

156 (source_root -> test_bit_number + 1) ;

157

158 new_ndfa_node -> Merge_In (item , copy_reject_states) ;

159

160 this -> transitions [ts] . insert (new_ndfa_node) ;

161

162 iter ++ ;

163 }

164 }

165

166 if ((source_root -> is_reject_state)

167 && (copy_reject_states))

168 {

169 this -> is_reject_state = true ;

170 this -> is_accept_state = false ;

171 }

172

173 Check_For_Determinism () ;

174 }

175

176 /** Delete_Dead_Branches

177 *

178 * A dead branch is one with either:

179 * - no _enabled_ accept states amongst any of its descendants.

180 * - a zero visit count (indicating that it will never be used in practice)

181 * This function tests to see if "this"

182 * is the parent of any dead branches. Any descendant dead branches are

183 * removed and deallocated.

184 *

185 * It returns TRUE if children were removed.

186 */

187 bool NDFA_Node :: Delete_Dead_Branches ()

188 {

189 NDFA_Node_Set_Iterator iter ;

190 NDFA_Node * item ;

191 bool is_dead_branch = false ;

192 bool no_children = true ;

193

194 /* First, eliminate dead branches from the children */

195 for (int ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

196 {

197 iter = this -> transitions [ts] . begin () ;

198 while (iter != this -> transitions [ts] . end ())

199 {

200 item = (* iter) ;

201

202 if (item -> Delete_Dead_Branches ())

203 {

204 iter ++ ;

205 Delete_Item_Before (& this -> transitions [ts] ,

206 iter) ;

207 } else {

208 iter ++ ;

209 }

210 }

211

212 if (! this -> transitions [ts] . empty ())

213 {

214 no_children = false ;

215 }

216 }

217

218 /* This is a dead branch if both the branches off it are NULL

219 (no children - i.e. all_sub_branches_dead == true) and either :

220 1. it is not an accept state

221 or 2. it is an accept state, but the accept state has been disabled

222 or 3. the visit counter is zero (in which case, the same will have been

223 true for the children, so there won’t be any children)

224

225 Return false iff this is a dead branch.*/

226

227 if (no_children)

228 {

108

229 if (visits == 0)

230 {

231 is_dead_branch = true ;

232 }

233 if (this -> is_accept_state)

234 {

235 if (! this -> accept_state -> Is_Enabled ())

236 {

237 is_dead_branch = true ;

238 }

239 } else {

240 is_dead_branch = true ;

241 }

242 }

243

244 return is_dead_branch ;

245 }

246

247 /** Compress

248 *

249 * Several algorithms are applied recursively to the NDFA tree to reduce the

250 * number of nodes while maintaining equivalence.

251 *

252 * 1. Nodes with one child are replaced by the child.

253 * 2. Nodes with two children are replaced by either child if the

254 * children are clearly equivalent (both the same accept state,

255 * or both reject states)

256 *

257 * These are surprisingly effective. Unfortunately, once compressed,

258 * the tree cannot be converted to a DFA again, because

259 * the Make_Deterministic algorithm is unable to handle the idea that

260 * nodes at the same tree depth might be testing different bits.

261 *

262 * The tree must be a DFA before it is compressed.

263 */

264 void NDFA_Node :: Compress ()

265 {

266 NDFA_Node * compressed_out_node ;

267 NDFA_Node_Set_Iterator iter ;

268 NDFA_Node * item ;

269 int ts ;

270

271 assert (is_deterministic) ;

272

273 MESSAGE4 ("Compress() begins bit = %d\n" , test_bit_number) ;

274

275 /* Recurse down and do the children if any. */

276 for (ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

277 {

278 iter = this -> transitions [ts] . begin () ;

279 while (iter != this -> transitions [ts] . end ())

280 {

281 item = (* iter) ;

282

283 /* Is this child a reject state? If so, it can be removed. */

284 if (item -> is_reject_state)

285 {

286 /* a quick sanity check assures that the tree is

287 * sane - no state is a reject and accept state */

288 assert ((! item -> is_accept_state)

289 && item -> transitions [0] . empty ()

290 && item -> transitions [1] . empty ()) ;

291 iter ++ ;

292 Delete_Item_Before (& this -> transitions [ts] ,

293 iter) ;

294 MESSAGE4 ("Compress() removed reject state bit = %d\n" ,

295 test_bit_number) ;

296 } else {

297 /* Attempt to compress it */

298 item -> Compress () ;

299

300 iter ++ ;

301 }

302 }

109

303 }

304

305 NDFA_Node_Set * tset0 = & (this -> transitions [0]) ;

306 NDFA_Node_Set * tset1 = & (this -> transitions [1]) ;

307

308 /* Compressions are possible if a node has only one child. */

309 if (tset1 -> empty ()

310 && (tset0 -> size () == 1))

311 {

312 MESSAGE4 ("Compress() node compressed out (type 1) bit = %d\n" ,

313 test_bit_number) ;

314

315 compressed_out_node = DFA_Transition (0) ;

316 } else if (tset0 -> empty ()

317 && (tset1 -> size () == 1))

318 {

319 MESSAGE4 ("Compress() node compressed out (type 2) bit = %d\n" ,

320 test_bit_number) ;

321

322 compressed_out_node = DFA_Transition (1) ;

323 /* or if there are two children, but they are both

324 accept states of the same type. */

325 } else if (((tset1 -> size () == 1)

326 && (tset0 -> size () == 1)

327 && (DFA_Transition (1) -> is_accept_state)

328 && (DFA_Transition (0) -> is_accept_state)

329 && (DFA_Transition (1) -> accept_state ==

330 DFA_Transition (0) -> accept_state)

331 && (DFA_Transition (1) -> test_bit_number ==

332 DFA_Transition (0) -> test_bit_number))

333 /* or if there are two children, but they are both reject states. */

334 || ((tset1 -> size () == 1)

335 && (tset0 -> size () == 1)

336 && (DFA_Transition (1) -> is_reject_state)

337 && (DFA_Transition (0) -> is_reject_state)))

338 {

339 MESSAGE4 ("Compress() node compressed out (type 3) bit = %d\n" ,

340 test_bit_number) ;

341

342 compressed_out_node = DFA_Transition (1) ;

343 /* or tset0.. doesn’t matter, they’re the same. */

344

345 if (compressed_out_node != DFA_Transition (0))

346 {

347 /* The two nodes are equivalent but are at different

348 * memory locations, so the 0 node must be deleted.

349 * (It will soon be inaccessible). */

350 delete DFA_Transition (0) ;

351 }

352 } else {

353 compressed_out_node = 0L ;

354 }

355

356 if (compressed_out_node != 0L)

357 {

358 /* Move the grandchildren up one generation.

359 The node we are looking at, this, Takes on the

360 properties of the compressed_out_node. */

361 Replace_With (compressed_out_node) ;

362 }

363 MESSAGE4 ("Compress() ends bit = %d\n" , test_bit_number) ;

364 }

365

366 /** Print_NDFA_DAG

367 *

368 * The NDFA tree is drawn out in ASCII format to the specified device.

369 */

370 void NDFA_Node :: Print_NDFA_DAG (bool with_pointers , FILE * fd ,

371 const char * old_tab_str)

372 {

373 if (is_accept_state)

374 {

375 assert (accept_state != 0L) ;

376

110

377 accept_state -> Print_Info (fd , old_tab_str) ;

378 if (with_pointers)

379 {

380 fprintf (fd , "%s ptr=%p\n" , old_tab_str , this) ;

381 }

382 } else if (is_reject_state)

383 {

384 if (with_pointers)

385 {

386 fprintf (fd , "%s REJECT ptr=%p\n" , old_tab_str , this) ;

387 } else {

388 fprintf (fd , "%s REJECT\n" , old_tab_str) ;

389 }

390 } else {

391 NDFA_Node_Set_Iterator iter ;

392 NDFA_Node * item ;

393 char * tab_str =

394 new char [strlen (old_tab_str) + 4] ;

395

396 strcpy (tab_str , old_tab_str) ;

397 strcat (tab_str , "1 ") ;

398 fprintf (fd , "%s+-ir(%d)=one:\n" , tab_str ,

399 BITS_PER_OPCODE - 1 - test_bit_number) ;

400

401 iter = transitions [1] . begin () ;

402 while (iter != transitions [1] . end ())

403 {

404 item = (* iter) ;

405

406 item -> Print_NDFA_DAG (with_pointers , fd , tab_str) ;

407 iter ++ ;

408 }

409 fprintf (fd , "%s\n" , tab_str) ;

410

411 strcpy (tab_str , old_tab_str) ;

412 strcat (tab_str , "0 ") ;

413 fprintf (fd , "%s+-ir(%d)=zero:\n" , tab_str ,

414 BITS_PER_OPCODE - 1 - test_bit_number) ;

415

416 iter = transitions [0] . begin () ;

417 while (iter != transitions [0] . end ())

418 {

419 item = (* iter) ;

420

421 item -> Print_NDFA_DAG (with_pointers , fd , tab_str) ;

422 iter ++ ;

423 }

424 fprintf (fd , "%s\n" , tab_str) ;

425

426 delete [] tab_str ;

427 }

428 }

429

430 /** Get_Size

431 *

432 * Returns the number of nodes in the tree.

433 */

434 int NDFA_Node :: Get_Size ()

435 {

436 NDFA_Node_Set_Iterator iter ;

437 NDFA_Node * item ;

438 int count = 1 ;

439

440 if ((! is_reject_state)

441 && (! is_accept_state))

442 {

443 for (int ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

444 {

445 iter = transitions [ts] . begin () ;

446 while (iter != transitions [ts] . end ())

447 {

448 item = (* iter) ;

449

450 count += item -> Get_Size () ;

111

451 iter ++ ;

452 }

453 }

454 }

455

456 return count ;

457 }

458

459 /** Make_Deterministic

460 *

461 * The NDFA is converted to a DFA. A depth-bounded depth first tree

462 * algorithm is used - Transform_NDFA_To_DFA is the procedure that

463 * actually does the work. This algorithm is used because it avoids

464 * the possibility that a very long branch of the NDFA may be uselessly

465 * converted to a DFA before it is realised that much of it will be

466 * rejected.

467 *

468 * Shallow copies of accept state pointers in the NDFA are made. Checking

469 * is done to ensure there are no ambiguous accept states. If a state is

470 * both an accept and a reject state, it is assumed to be a reject state.

471 *

472 * The return value is the number of nodes in the DFA.

473 *

474 * This will not work correctly on all compressed trees - an assertion

475 * will fail if the tree has been compressed. See the comment for

476 * Compress().

477 */

478 void NDFA_Node :: Make_Deterministic ()

479 {

480 MESSAGE4 ("Make_Deterministic ()\n") ;

481

482 /* Create a new root for the DFA */

483 NDFA_Node * dfa_root = new NDFA_Node (test_bit_number) ;

484

485 /* Transform the NDFA into a DFA. This is a depth-bounded

486 * depth first tree operation - the depth is increased until

487 * the operation finishes. */

488 for (int i = test_bit_number ; i <= BITS_PER_OPCODE ; i ++)

489 {

490 Transform_NDFA_To_DFA (dfa_root , i) ;

491 }

492

493 /* Remove children of the NDFA tree root */

494 Delete_Children () ;

495

496 /* Destroy the NDFA tree, replacing it with the DFA tree. */

497 Replace_With (dfa_root) ;

498

499 Check_For_Determinism () ;

500 assert (is_deterministic) ;

501 }

502

503 /** Get_Accept_State

504 *

505 * Returns the accept state information for the node (if any) or 0.

506 */

507 Accept_State * NDFA_Node :: Get_Accept_State ()

508 {

509 if (is_accept_state)

510 {

511 return accept_state ;

512 } else {

513 return 0L ;

514 }

515 }

516

517 /** DFA_Transition

518 *

519 * Returns the node reached by a transition ts. It returns 0L if

520 * no node is reached.

521 */

522 NDFA_Node * NDFA_Node :: DFA_Transition (int ts)

523 {

524 NDFA_Node_Set_Iterator iter ;

112

525

526 if (transitions [ts] . empty ())

527 {

528 return 0L ;

529 } else {

530 iter = transitions [ts] . begin () ;

531 return (* iter) ;

532 }

533 }

534

535 /****** NDFA_Node private methods ******/

536

537 /** Delete_Item_Before

538 *

539 * This convenience procedure finds the NDFA node before the current item

540 * in "set" (i.e. "iter" - 1). This NDFA node is removed from the set and

541 * deleted.

542 */

543 void NDFA_Node :: Delete_Item_Before (NDFA_Node_Set * set ,

544 NDFA_Node_Set_Iterator iter)

545 {

546 NDFA_Node * item ;

547

548 iter -- ;

549 item = (* iter) ;

550

551 delete item ;

552

553 set -> erase (iter) ;

554 }

555

556 /** Check_For_Determinism

557 *

558 * Examines the current node (no recursion) and its children

559 * and sets the deterministic flags appropriately.

560 *

561 * Node is deterministic if there are 0 or 1 children

562 * for each type of transition and those children are deterministic too.

563 */

564 void NDFA_Node :: Check_For_Determinism ()

565 {

566 is_deterministic = true ;

567 for (int ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

568 {

569 if (transitions [ts] . size () > 1)

570 {

571 // not deterministic - 2 or more children

572 is_deterministic = false ;

573 } else if (! transitions [ts] . empty ())

574 {

575 if (! DFA_Transition (ts) -> is_deterministic)

576 {

577 // child is not deterministic

578 is_deterministic = false ;

579 }

580 }

581 }

582 }

583

584 /** Delete_Children

585 *

586 * Used for the conversion of a node into a rejecting node, or for

587 * freeing the data structures.

588 */

589 void NDFA_Node :: Delete_Children ()

590 {

591 NDFA_Node_Set_Iterator remove_iter ;

592

593 /* Unfortunately a child node may be in both ndfa_root -> transitions[1]

594 and ndfa_root -> transitions[0]. So items from transitions[0] are moved

595 to transitions[1] before deletion */

596 remove_iter = transitions [0] . begin () ;

597 while (remove_iter != transitions [0] . end ())

598 {

113

599 NDFA_Node * n = (* remove_iter) ;

600

601 transitions [1] . insert (n) ;

602 remove_iter ++ ;

603 }

604

605 remove_iter = transitions [1] . begin () ;

606 while (remove_iter != transitions [1] . end ())

607 {

608 NDFA_Node * n = (* remove_iter) ;

609

610 delete n ;

611

612 remove_iter ++ ;

613 }

614 transitions [0] . clear () ;

615 transitions [1] . clear () ;

616 }

617

618 /** Transform_NDFA_To_DFA

619 *

620 * Does the work for Make_Deterministic(). The NDFA (this) is

621 * converted to a DFA (dfa_root) by a depth bounded depth first

622 * tree operation.

623 *

624 * This will not work correctly on all compressed trees - an assertion

625 * will fail if the tree has been compressed. See the comment for

626 * Compress().

627 */

628 void NDFA_Node :: Transform_NDFA_To_DFA (NDFA_Node * dfa_root ,

629 int depth_remaining)

630 {

631 NDFA_Node_Set_Iterator iter ;

632 NDFA_Node * item ;

633 int ts ;

634

635 if (depth_remaining < 0)

636 {

637 /* Implement the depth bound */

638 return ;

639 }

640

641 if ((dfa_root -> is_reject_state)

642 || (dfa_root -> is_accept_state))

643 {

644 /* The DFA node is an accept/reject state. The children of

645 * the node, if any, are not important. */

646 return ;

647 }

648

649 /* If any NDFA nodes are in each transition set, check to

650 * see if any of them are accept or reject states... */

651 for (ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

652 {

653 if (! this -> transitions [ts] . empty ())

654 {

655 NDFA_Node * dfa_child = dfa_root -> DFA_Transition (ts) ;

656

657 if (dfa_child == 0L)

658 {

659 dfa_child = new NDFA_Node

660 (dfa_root -> test_bit_number + 1) ;

661 dfa_root -> transitions [ts] . insert (dfa_child) ;

662 }

663

664 iter = this -> transitions [ts] . begin () ;

665 while (iter != this -> transitions [ts] . end ())

666 {

667 item = (* iter) ;

668 if (item -> is_reject_state)

669 {

670 /* The NDFA node is a reject state. Go no further: the

671 DFA node must also be a reject state. */

672 dfa_child -> Make_Reject_State () ;

114

673 } else if (item -> is_accept_state)

674 {

675 /* The NDFA node is an accept state. Ensure that, if

676 * the DFA node is already known to be an accept state,

677 * that it is the SAME accept state. Otherwise,

678 * it is non-deterministic and there is nothing

679 * we can do to change that. */

680

681 dfa_child -> Make_Accept_State (item -> accept_state) ;

682 } else {

683 /* Regular transition node.

684 * Ensure that all children reached by transition ts in

685 * the NDFA are testing the same bit number. */

686 assert (dfa_child -> test_bit_number ==

687 item -> test_bit_number) ;

688 }

689 iter ++ ;

690 }

691 }

692 }

693

694 if ((dfa_root -> is_reject_state)

695 || (dfa_root -> is_accept_state))

696 {

697 /* The DFA node has become, as a result of the nodes just added

698 * to it, an accept/reject state. The children of

699 * the node, if any, are not important. */

700 return ;

701 }

702

703 /* Transform the child subtrees */

704 for (ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

705 {

706 NDFA_Node * dfa_child = dfa_root -> DFA_Transition (ts) ;

707

708 if (dfa_child != 0L)

709 {

710 iter = this -> transitions [ts] . begin () ;

711 while (iter != this -> transitions [ts] . end ())

712 {

713 item = (* iter) ;

714

715 item -> Transform_NDFA_To_DFA (dfa_child ,

716 depth_remaining - 1) ;

717 iter ++ ;

718 }

719 }

720 }

721 dfa_root -> Check_For_Determinism () ;

722 }

723

724 /** Replace_With

725 *

726 * The important fields of n are copied to this. Then, n is deleted.

727 * The aim is to allow the node <this> to be replaced by n, so that

728 * n is moved up the tree.

729 */

730 void NDFA_Node :: Replace_With (NDFA_Node * n)

731 {

732 this -> accept_state = n -> accept_state ;

733 this -> is_accept_state = n -> is_accept_state ;

734 this -> is_reject_state = n -> is_reject_state ;

735 this -> test_bit_number = n -> test_bit_number ;

736

737 for (int ts = 0 ; ts < TRANSITION_TYPES ; ts ++)

738 {

739 this -> transitions [ts] = n -> transitions [ts] ;

740 n -> transitions [ts] . clear () ;

741 }

742

743 delete n ;

744 }

745

115

G.9. Source code of ndfa node.h
1

2

3 #ifndef NDFA_NODE_H

4 #define NDFA_NODE_H

5

6 #include <exception>

7 #include <set>

8

9 #include "definitions.h"

10 #include "ndfa_accept_state.h"

11 #include "exceptions.h"

12

13

14 class NDFA_Node ;

15

16 typedef set<NDFA_Node *> NDFA_Node_Set ;

17 typedef NDFA_Node_Set::iterator NDFA_Node_Set_Iterator ;

18

19

20

21 class NDFA_Node

22 {

23 public:

24 NDFA_Node (int test_bit_number) ;

25 virtual ~NDFA_Node () ;

26

27

28 bool Is_Deterministic ()

29 { return is_deterministic ; } ;

30

31 void Merge_In (NDFA_Node * to_be_merged , bool cpr) ;

32

33 void Compress () ;

34

35 bool Delete_Dead_Branches () ;

36

37 void Print_NDFA_DAG (bool with_pointers , FILE * fd ,

38 const char * old_tab_str = "") ;

39

40 int Get_Size () ;

41

42 NDFA_Node * Add_Transition (bool transition_on_zero ,

43 bool transition_on_one) ;

44 void Make_Reject_State () ;

45 void Make_Accept_State (Accept_State * accept_info) ;

46

47 void Make_Deterministic () ;

48

49 NDFA_Node * DFA_Transition (int ts) ;

50

51 int Get_Test_Bit_Number ()

52 { return test_bit_number ; } ;

53

54 Accept_State * Get_Accept_State () ;

55

56 void Visit ()

57 { visits ++ ; } ;

58 int Get_Number_Of_Visits ()

59 { return visits ; } ;

60

61

62

63

64 private:

65 void Delete_Item_Before (NDFA_Node_Set * set ,

66 NDFA_Node_Set_Iterator iter) ;

67 void Check_For_Determinism () ;

68 void Delete_Children () ;

69 void Transform_NDFA_To_DFA (NDFA_Node * dfa_root , int depth_remaining) ;

70 void Replace_With (NDFA_Node * n) ;

71

72

116

73

74 Accept_State * accept_state ;

75 bool is_accept_state ;

76 bool is_reject_state ;

77 bool is_deterministic ;

78 NDFA_Node_Set transitions [TRANSITION_TYPES] ;

79 int test_bit_number ;

80 int visits ;

81

82

83 } ;

84

85

86

87

88 #endif

89

G.10. Source code of opcode map reader.cc
1 #include <stdio.h>

2

3 #include <sys/types.h>

4 #include <regex.h>

5 #include <assert.h>

6 #include <stdlib.h>

7 #include <string.h>

8 #include <ctype.h>

9

10 #include "opcode_map_reader.h"

11 #include "utils.h"

12 #include "definitions.h"

13 #include "ndfa_dag.h"

14 #include "ndfa_accept_state.h"

15 #include "state.h"

16 #include "state_machine.h"

17

18 /****** Opcode_Map_Reader public methods ******/

19

20 /** Read_Opcode_Map

21 *

22 * Read in an opcode map file, updating the ndfa structure.

23 * Accept state information is obtained from New_Accept_State().

24 */

25 int Opcode_Map_Reader :: Read_Opcode_Map (const char * filename)

26 {

27 const char * read_regex_str =

28 "^(....) (.{8})(.{7})(.{16})(.{8})(.*)$" ;

29 const int NUMFIELDS = 6 ; /* number of regular expression fields */

30

31 char str [MAX_LINE_LEN + 1] ;

32 FILE * fd = fopen (filename , "rt") ;

33 int rc ;

34 regex_t read_regex ;

35 int opcodes_read = 0 ;

36

37 if (fd == 0)

38 {

39 return 0 ;

40 }

41

42 MESSAGE ("Reading opcode map from %s\n" , filename) ;

43

44 rc = regcomp (& read_regex , read_regex_str , REG_EXTENDED) ;

45 assert (rc == 0) ;

46

47 /* read in a line from the map file */

48 while (fgets (str , MAX_LINE_LEN , fd) != NULL)

49 {

50 Remove_Trailing_Newlines (str) ;

51

52 regmatch_t matches [NUMFIELDS + 1] ;

53

117

54 if ((str [0] == ’#’) /* comment */

55 || (! String_Contains_Non_Whitespace (str))) /* blank line */

56 {

57 continue ;

58 }

59

60 if (regexec (& read_regex , str , NUMFIELDS + 1 ,

61 matches , 0) != 0)

62 {

63 /* line not recognised */

64 throw new Unrecognised_Opcode_Map_Entry (str) ;

65 }

66

67 char * micro_sub_name =

68 Get_Regex_Match (str , & matches [4]) ;

69

70 if (! String_Contains_Non_Whitespace (micro_sub_name))

71 {

72 MESSAGE3 ("Skipped ’%s’ - no micro sub name.\n" , str) ;

73 delete [] micro_sub_name ;

74 continue ;

75 }

76

77 Remove_Whitespace_From_Ends (micro_sub_name) ;

78

79 char * bit_pattern =

80 Get_Regex_Match (str , & matches [1]) ;

81 char * opcode_name =

82 Get_Regex_Match (str , & matches [2]) ;

83 char * dea = Get_Regex_Match (str , & matches [3]) ;

84 char * optimisation_info =

85 Get_Regex_Match (str , & matches [5]) ;

86 char * comment = Get_Regex_Match (str , & matches [6]) ;

87 char cmp_bit_pattern [BITS_PER_OPCODE + 1] ;

88 Accept_State *

89 accept_state ;

90 int i , j ;

91

92 Remove_Whitespace_From_Ends (opcode_name) ;

93 Remove_Whitespace_From_Ends (comment) ;

94

95 MESSAGE2 ("Adding %s %s\n" , opcode_name , comment) ;

96

97 /* Remove all spaces from the bit pattern */

98 for (i = 0 , j = 0 ; i < (int) strlen (bit_pattern) ; i ++)

99 {

100 if (! isspace (bit_pattern [i]))

101 {

102 assert (j < BITS_PER_OPCODE) ;

103 cmp_bit_pattern [j] = bit_pattern [i] ;

104 j ++ ;

105 }

106 }

107 assert (j == BITS_PER_OPCODE) ;

108 cmp_bit_pattern [j] = ’\0’ ;

109

110 /* Get an accept state for this line. */

111 accept_state = New_Accept_State (cmp_bit_pattern , opcode_name ,

112 dea , micro_sub_name ,

113 optimisation_info , comment) ;

114 assert (accept_state != 0L) ;

115

116 /* Create a temporary NDFA that accepts any bit sequence

117 * and has an accept state with information from "accept_state" */

118 NDFA_DAG temporary_ndfa (accept_state) ;

119

120 /* Begin parsing the bit pattern to determine which

121 * patterns are NOT acceptable for this opcode. This

122 * bit is highly specific to the format of the map file. */

123 for (i = 0 ; i < BITS_PER_OPCODE ; i ++)

124 {

125 switch (cmp_bit_pattern [i])

126 {

127 case ’0’ :

118

128 temporary_ndfa . Reject_Pattern (i , "1") ;

129 break ;

130 case ’1’ :

131 temporary_ndfa . Reject_Pattern (i , "0") ;

132 break ;

133 case ’R’ :

134 case ’r’ :

135 case ’Z’ :

136 case ’D’ :

137 case ’e’ :

138 case ’a’ :

139 case ’I’ :

140 case ’X’ :

141 case ’C’ :

142 /* These always match. They may be 1 or 0 */

143 break ;

144 default :

145 if (strncmp (& cmp_bit_pattern [i] ,

146 "SS" , 2) == 0)

147 {

148 /* a size, that can be anything but 11 */

149 temporary_ndfa . Reject_Pattern (i , "11") ;

150 i ++ ;

151 } else if (strncmp (& cmp_bit_pattern [i] ,

152 "ss" , 2) == 0)

153 {

154 /* another sort of size, that can be

155 * anything but 00 */

156 temporary_ndfa . Reject_Pattern (i , "00") ;

157 i ++ ;

158 } else if (strncmp (& cmp_bit_pattern [i] ,

159 "TT" , 2) == 0)

160 {

161 /* a bit operation type. Doesn’t

162 match if it is 00 */

163 temporary_ndfa . Reject_Pattern (i , "00") ;

164 i ++ ;

165 } else if (strncmp (& cmp_bit_pattern [i] ,

166 "cccc" , 4) == 0)

167 {

168 /* Condition code.. may be anything apart

169 from 1. */

170 temporary_ndfa . Reject_Pattern (i , "0001") ;

171 i += 3 ;

172 } else if (strncmp (& cmp_bit_pattern [i] ,

173 "EEEEEE" , 6) == 0)

174 {

175 /* An effective address field. */

176 Add_Reject_EAs (& temporary_ndfa , i ,

177 dea , false) ;

178 i += 5 ;

179 } else if (strncmp (& cmp_bit_pattern [i] ,

180 "MMMMMM" , 6) == 0)

181 {

182 /* Another sort of effective address field. */

183 Add_Reject_EAs (& temporary_ndfa , i ,

184 dea , true) ;

185 i += 5 ;

186 } else {

187 /* character not recognised */

188 assert (0) ;

189 }

190 break ;

191 }

192 }

193

194 MESSAGE3 (" (NDFA size for ’%s’ = %d)\n" ,

195 opcode_name , temporary_ndfa . Get_Size ()) ;

196

197 /* Turn the NDFA that accepts this opcode into a DFA.

198 * The procedure assumes that any state that is both a

199 * reject state and an accept state is just a reject state.

200 * In this way, the resulting DFA accepts exactly the opcode

201 * and rejects everything else. */

119

202 temporary_ndfa . Make_Deterministic () ;

203

204 MESSAGE3 (" (DFA size for ’%s’ = %d)\n" ,

205 opcode_name , temporary_ndfa . Get_Size ()) ;

206

207 /* Can’t compress the DFA here. It will compress to one accept

208 * state! */

209

210 /* And merge it into the main opcode

211 * We do not set any of the states in _this_ NDFA as REJECT,

212 * (last parameter is false) because the reject states

213 * of one opcode may well be accept states of another. */

214 ndfa . Merge_In (& temporary_ndfa , false) ;

215

216 opcodes_read ++ ;

217

218 MESSAGE3 (" (%d opcodes: master NDFA size is now %d)\n" ,

219 opcodes_read , ndfa . Get_Size ()) ;

220

221 /* Free up memory used to store regex fields */

222 delete [] bit_pattern ;

223 delete [] opcode_name ;

224 delete [] dea ;

225 delete [] micro_sub_name ;

226 delete [] comment ;

227 }

228 regfree (& read_regex) ;

229

230 MESSAGE ("Making decoding DFA..\n") ;

231

232 ndfa . Make_Deterministic () ;

233

234 MESSAGE ("Decoding DFA has %d nodes.\n" , ndfa . Get_Size ()) ;

235

236 return opcodes_read ;

237 }

238

239 /****** Opcode_Map_Reader private methods ******/

240

241 /** Add_Reject_EAs

242 *

243 * A helper function for adding a series of rejection states to

244 * an NDFA, to represent an effective address field.

245 */

246 void Opcode_Map_Reader :: Add_Reject_EAs (NDFA_DAG * n , int offset ,

247 const char * dea , bool move_destination_ea)

248 {

249 /* parse the list of disallowed address modes */

250 if (index (dea , ’i’) != NULL)

251 {

252 /* Immediates are not allowed. */

253 n -> Reject_Pattern (offset ,

254 move_destination_ea ? "100111" : "111100") ;

255 }

256 if (index (dea , ’p’) != NULL)

257 {

258 /* PC-relative is not allowed.

259 not indirect with displacement: */

260 n -> Reject_Pattern (offset ,

261 move_destination_ea ? "010111" : "111010") ;

262 /* nor memory indirect with index */

263 n -> Reject_Pattern (offset ,

264 move_destination_ea ? "011111" : "111011") ;

265 }

266 if (index (dea , ’a’) != NULL)

267 {

268 /* Address Register Direct: not allowed */

269 n -> Reject_Pattern (

270 move_destination_ea ? (offset + 3) : offset , "001") ;

271 }

272 if (index (dea , ’d’) != NULL)

273 {

274 /* Data Register Direct: not allowed */

275 n -> Reject_Pattern (

120

276 move_destination_ea ? (offset + 3) : offset , "000") ;

277 }

278 if ((index (dea , ’r’) != NULL)

279 || (index (dea , ’+’) != NULL))

280 {

281 /* Register modifying modes not allowed...

282 no postinc */

283 n -> Reject_Pattern (

284 move_destination_ea ? (offset + 3) : offset , "011") ;

285 }

286 if ((index (dea , ’r’) != NULL)

287 || (index (dea , ’-’) != NULL))

288 {

289 /* Register modifying modes not allowed...

290 no predec */

291 n -> Reject_Pattern (

292 move_destination_ea ? (offset + 3) : offset , "100") ;

293 }

294

295 /* These three modes are reserved by Motorola

296 and are thus never valid. */

297 n -> Reject_Pattern (offset ,

298 move_destination_ea ? "101111" : "111101") ;

299 n -> Reject_Pattern (offset ,

300 move_destination_ea ? "110111" : "111110") ;

301 n -> Reject_Pattern (offset ,

302 move_destination_ea ? "111111" : "111111") ;

303 }

304

G.11. Source code of opcode map reader.h
1

2 #ifndef OPCODE_MAP_READER_H

3 #define OPCODE_MAP_READER_H

4

5 #include <set>

6

7 #include "ndfa_dag.h"

8

9 class Opcode_Map_Reader

10 {

11 public:

12 Opcode_Map_Reader () { } ;

13 virtual ~Opcode_Map_Reader () { } ;

14

15 int Read_Opcode_Map (const char * filename) ;

16

17 virtual Accept_State * New_Accept_State (

18 const char * cmp_bit_pattern ,

19 const char * opcode_name ,

20 const char * dea ,

21 const char * micro_sub_name ,

22 const char * optimisation_info ,

23 const char * comment) { return 0L ; } ;

24

25 protected:

26 NDFA_DAG ndfa ;

27

28 private:

29

30 void Add_Reject_EAs (NDFA_DAG * ndfa , int offset ,

31 const char * dea , bool move_destination_ea) ;

32

33 } ;

34

35 #endif

36

121

G.12. Source code of optimisation.cc
1

2 #include <stdio.h>

3 #include <string.h>

4 #include <ctype.h>

5

6 #include "optimisation.h"

7 #include "exceptions.h"

8 #include "utils.h"

9

10

11 /****** Optimisation_Record static data ******/

12

13 const Optimisation_Type_Data Optimisation_Record :: opt_data [] = {

14 { EA , "ea_mode" , "EM" } ,

15 { EAREG , "ea_reg" , "em" } ,

16 { ALUOP , "alu_internal_op" , "+-|&^c" } } ;

17

18 /****** Optimisation_Record public methods ******/

19

20 /** Optimisation_Record constructor

21 *

22 * A new optimisation record is created for the named optimisation type.

23 */

24 Optimisation_Record :: Optimisation_Record (const char * n)

25 {

26 /* We don’t know what subtype the optimisation will take.. */

27 subtype = ’\0’ ;

28

29 /* Search the opt_data table for the optimisation type */

30 for (int i = 0 ; i < NUMBER_OF_OPTIMISATIONS ; i ++)

31 {

32 if (strcasecmp (n , opt_data [i] . name) == 0)

33 {

34 type = opt_data [i] . type ;

35 return ;

36 }

37 }

38 throw new Unrecognised_Optimisation_Exception (n) ;

39 }

40

41 /** Optimisation_Record constructor

42 *

43 * A new optimisation record is created for the named optimisation type.

44 * Here, the name is specified as a code character. These are the same

45 * characters that are used in the optimisation field of the opcode map.

46 */

47 Optimisation_Record :: Optimisation_Record (char c)

48 {

49 /* Make a note of the optimisation’s subtype */

50 subtype = c ;

51

52 /* Search the opt_data table for the optimisation type */

53 for (int i = 0 ; i < NUMBER_OF_OPTIMISATIONS ; i ++)

54 {

55 if (index (opt_data [i] . codes , c) != 0L)

56 {

57 type = opt_data [i] . type ;

58 return ;

59 }

60 }

61 char name [2] = { c , ’\0’ } ;

62

63 throw new Unrecognised_Optimisation_Exception (name) ;

64 }

65

66 /** Print_Info

67 *

68 * Print the type name and subtype character of this optimisation record.

69 */

70 void Optimisation_Record :: Print_Info ()

71 {

72 MESSAGE3 ("%s(%c) " , opt_data [type] . name , subtype) ;

122

73 }

74

75 /****** Optimisation_NDFA_Accept_State public methods ******/

76

77 /** Optimisation_NDFA_Accept_State destructor

78 *

79 * The list of optimisation records is deleted.

80 */

81 Optimisation_NDFA_Accept_State :: ~Optimisation_NDFA_Accept_State ()

82 {

83 Optimisation_Record_Set_Iter iter ;

84

85 iter = opts . begin () ;

86 while (iter != opts . end ())

87 {

88 Optimisation_Record * item = (* iter) ;

89

90 delete item ;

91

92 iter ++ ;

93 }

94 }

95

96 /****** Optimisation_Manager public methods ******/

97

98 /** Optimisation_Manager constructor

99 *

100 * The various optimisation classes are created.

101 */

102 Optimisation_Manager :: Optimisation_Manager ()

103 : Opcode_Map_Reader ()

104 {

105 optimisation_types [EA] = new EA_Optimisation () ;

106 optimisation_types [EAREG] = new EA_Reg_Optimisation () ;

107 optimisation_types [ALUOP] = new ALU_Optimisation () ;

108 }

109

110 /** Optimisation_Manager destructor

111 *

112 * The various optimisation classes are deleted.

113 */

114 Optimisation_Manager :: ~Optimisation_Manager ()

115 {

116 for (int i = 0 ; i < NUMBER_OF_OPTIMISATIONS ; i ++)

117 {

118 delete optimisation_types [i] ;

119 }

120 }

121

122 /** Notify

123 *

124 * All the optimisation classes that are available for this opcode are

125 * notified that it will appear in the program. They use this information

126 * to work out what optimisations can be applied.

127 */

128 void Optimisation_Manager :: Notify (unsigned opcode)

129 {

130 MESSAGE2 ("Adding optimisation info for opcode 0x%04x..\n" ,

131 opcode) ;

132

133 Optimisation_NDFA_Accept_State * accept_state =

134 (Optimisation_NDFA_Accept_State *) ndfa . Get_Accept_State (opcode) ;

135

136 if (accept_state == 0L)

137 {

138 throw new UnavailableOpcodeException () ;

139 }

140

141 Optimisation_Record_Set o_list = accept_state ->

142 Get_Optimisation_Record_Set () ;

143

144 Optimisation_Record_Set_Iter iter ;

145

146 iter = o_list . begin () ;

123

147 while (iter != o_list . end ())

148 {

149 Optimisation_Record * item = (* iter) ;

150

151 optimisation_types [item -> Get_Optimisation_Type ()] ->

152 Notify (opcode , item -> Get_Subtype ()) ;

153 iter ++ ;

154 }

155 }

156

157 /** New_Accept_State

158 *

159 * Create a new accept state. This method is called from inherited method

160 * Read_Opcode_Map as data is read from the file.

161 */

162 Accept_State * Optimisation_Manager :: New_Accept_State (

163 const char * cmp_bit_pattern ,

164 const char * opcode_name ,

165 const char * dea ,

166 const char * micro_sub_name ,

167 const char * optimisation_info ,

168 const char * comment)

169 {

170 Optimisation_NDFA_Accept_State * accept_state ;

171

172 /* Create the new accept state */

173 accept_state = new Optimisation_NDFA_Accept_State ;

174

175 /* Now, what optimisations should be present for this opcode?

176 * Check the optimisation_info field */

177

178 MESSAGE3 ("Adding optimisations for %s: " , opcode_name) ;

179 for (int i = 0 ; i < (int) strlen (optimisation_info) ; i ++)

180 {

181 if (! isspace (optimisation_info [i]))

182 {

183 /* Create a new optimisation and add it to the accept state. */

184 Optimisation_Record * new_opt =

185 new Optimisation_Record (optimisation_info [i]) ;

186

187 new_opt -> Print_Info () ;

188

189 accept_state -> Add_Optimisation (new_opt) ;

190 }

191 }

192

193 MESSAGE3 ("\n") ;

194

195 return accept_state ;

196 }

197

198 /** Generate_VHDL

199 *

200 * The given optimisation type is asked for the VHDL that implements the

201 * optimisation.

202 */

203 void Optimisation_Manager :: Generate_VHDL (

204 FILE * output , Optimisation_Record o_type)

205 {

206 optimisation_types [o_type . Get_Optimisation_Type ()] ->

207 Generate_VHDL (output) ;

208 }

209

G.13. Source code of optimisation.h
1 #ifndef OPTIMISATION_H

2 #define OPTIMISATION_H

3

4 #include <stdio.h>

5 #include <set>

6

7 #include "basic_optimisation.h"

124

8 #include "ea_optimisation.h"

9 #include "ea_reg_optimisation.h"

10 #include "alu_optimisation.h"

11 #include "opcode_map_reader.h"

12

13 enum Optimisation_Type { EA = 0 , EAREG ,

14 ALUOP , NUMBER_OF_OPTIMISATIONS } ;

15

16 struct Optimisation_Type_Data

17 {

18 Optimisation_Type type ;

19 const char name [16] ;

20 const char codes [16] ;

21 } ;

22

23 class Optimisation_Record

24 {

25 public:

26 Optimisation_Record (const char * name) ;

27 Optimisation_Record (char c) ;

28

29 Optimisation_Type Get_Optimisation_Type () const

30 { return type ; } ;

31 char Get_Subtype () const

32 { return subtype ; } ;

33

34 void Print_Info () ;

35

36 private:

37 Optimisation_Type type ;

38 char subtype ;

39

40 static const Optimisation_Type_Data opt_data [NUMBER_OF_OPTIMISATIONS] ;

41 } ;

42

43 struct Optimisation_Record_Compare

44 {

45 bool operator () (const Optimisation_Record * r1 ,

46 const Optimisation_Record * r2) const

47 {

48 if (r1 -> Get_Optimisation_Type () ==

49 r2 -> Get_Optimisation_Type ())

50 {

51 return (r1 -> Get_Subtype () < r2 -> Get_Subtype ()) ;

52 } else {

53 return (r1 -> Get_Optimisation_Type ()) <

54 (r2 -> Get_Optimisation_Type ()) ;

55 }

56 }

57 } ;

58

59 typedef set<Optimisation_Record *, Optimisation_Record_Compare>

60 Optimisation_Record_Set ;

61 typedef Optimisation_Record_Set::iterator Optimisation_Record_Set_Iter ;

62

63 class Optimisation_NDFA_Accept_State : public Accept_State

64 {

65 public:

66 virtual ~Optimisation_NDFA_Accept_State () ;

67

68 Optimisation_Record_Set & Get_Optimisation_Record_Set ()

69 { return opts ; } ;

70 void Add_Optimisation (Optimisation_Record * r)

71 { opts . insert (r) ; } ;

72

73 private:

74 Optimisation_Record_Set opts ;

75 } ;

76

77 class Optimisation_Manager : public Opcode_Map_Reader

78 {

79 public:

80 Optimisation_Manager () ;

81 virtual ~Optimisation_Manager () ;

125

82

83 void Notify (unsigned opcode) ;

84

85 void Generate_VHDL (FILE * output , Optimisation_Record o_type) ;

86

87 virtual Accept_State * New_Accept_State (

88 const char * cmp_bit_pattern ,

89 const char * opcode_name ,

90 const char * dea ,

91 const char * micro_sub_name ,

92 const char * optimisation_info ,

93 const char * comment) ;

94

95 private:

96 Basic_Optimisation * optimisation_types [NUMBER_OF_OPTIMISATIONS] ;

97 } ;

98

99 #endif

100

G.14. Source code of programram.cc
1

2 #include <stdio.h>

3

4 #include "programram.hh"

5

6 using namespace vm68k ;

7

8 ProgramRAM :: ProgramRAM (uint32_type startAddr , uint32_type memorySize ,

9 const char * filename , bool debug)

10 throw (memory_exception , file_reading_exception)

11 : RAM (startAddr , memorySize , debug)

12 {

13 FILE * ihex = fopen (filename , "rt") ;

14

15 if (ihex == NULL)

16 {

17 throw file_reading_exception () ;

18 }

19

20 startPC = 0 ;

21 lowestAddrUsed = highestAddrUsed = 0 ;

22

23 while (! feof (ihex))

24 {

25 const uint32_type

26 bytesLimit = 32 ;

27 int bytes [bytesLimit] ;

28 uint32_type numberOfBytes , lineAddr , recordType ;

29 char buffer [128] ;

30

31 fgets (buffer , 127 , ihex) ;

32

33 if ((buffer [0] == ’:’)

34 && (sscanf (buffer , ":%02x%04x%02x" ,

35 & numberOfBytes , & lineAddr , & recordType) == 3)

36 && (numberOfBytes <= bytesLimit))

37 {

38 /* scan data bytes */

39 for (uint32_type i = 0 ; i < numberOfBytes ; i ++)

40 {

41 uint32_type startChar = 9 + ((int) i * 2) ;

42

43 if (! ((startChar < strlen (buffer))

44 && (sscanf (& buffer [startChar] , "%02x" ,

45 & bytes [i]) == 1)))

46 {

47 throw file_reading_exception () ;

48 }

49 }

50 if ((recordType == 0) // This is a data record

51 && (numberOfBytes > 0))

126

52 {

53 uint32_type endOfLineAddr = (lineAddr + numberOfBytes - 1) ;

54

55 if (lineAddr < getLowestAddr ())

56 {

57 throw (address_error (lineAddr , memory :: WRITE)) ;

58 } else if (endOfLineAddr > getHighestAddr ())

59 {

60 throw (address_error (lineAddr + numberOfBytes - 1 , memory :: WRITE)) ;

61 }

62

63 for (uint32_type i = 0 ; i < numberOfBytes ; i ++)

64 {

65 put_8 ((uint32_type) lineAddr + i , bytes [i] ,

66 (function_code) memory :: WRITE) ;

67 }

68

69 if (endOfLineAddr > highestAddrUsed)

70 {

71 highestAddrUsed = endOfLineAddr ;

72 } else if (lineAddr < lowestAddrUsed)

73 {

74 lowestAddrUsed = lineAddr ;

75 }

76 } else if ((recordType == 3)

77 && (numberOfBytes >= 4))

78 {

79 startPC = bytes [3] |

80 (bytes [2] << 8) |

81 (bytes [1] << 16) |

82 (bytes [0] << 24) ;

83 }

84 }

85 }

86 fclose (ihex) ;

87 }

88

89 ProgramRAM :: ~ProgramRAM ()

90 {

91 }

92

G.15. Source code of programram.hh
1 #ifndef PROGRAM_RAM_HH

2 #define PROGRAM_RAM_HH

3

4 #include "ram.hh"

5

6 #include <vm68k/types.h>

7 #include <vm68k/memory.h>

8 #include <vm68k/processor.h>

9

10 using namespace vm68k ;

11

12 class ProgramRAM : public RAM

13 {

14 public:

15 struct file_reading_exception : exception

16 {

17 } ;

18

19 ProgramRAM (uint32_type startAddr , uint32_type memorySize ,

20 const char * filename , bool debug = false)

21 throw (memory_exception , file_reading_exception) ;

22 virtual ~ProgramRAM () ;

23

24 uint32_type getStartPC ()

25 { return startPC ; } ;

26 uint32_type getLowestAddrUsedByProgram ()

27 { return lowestAddrUsed ; } ;

28 uint32_type getHighestAddrUsedByProgram ()

29 { return highestAddrUsed ; } ;

127

30

31 private:

32 uint32_type startPC ;

33 uint32_type lowestAddrUsed , highestAddrUsed ;

34 } ;

35

36 #endif

37

G.16. Source code of state.cc
1

2 #include <stdio.h>

3 #include <string.h>

4 #include <stdlib.h>

5 #include <assert.h>

6 #include <limits.h>

7

8 #include <map>

9 #include <list>

10 #include <iostream>

11

12 #include "utils.h"

13 #include "state.h"

14

15 /****** State public methods ******/

16

17 /** State destructor

18 *

19 * Frees the state and associated command list.

20 */

21 State :: ~State ()

22 {

23 /* Free the command list */

24 Command_List_Iterator iter ;

25 Command * item ;

26

27 iter = commands . begin () ;

28 while (iter != commands . end ())

29 {

30 item = (* iter) ;

31 delete item ;

32 iter ++ ;

33 }

34

35 if (state_name != 0L)

36 {

37 delete [] state_name ;

38 }

39 }

40

41 /** Add_Command

42 *

43 * Add an extra command to the end of the list of VHDL

44 * commands for the given state. */

45 void State :: Add_Command (Command * cmd)

46 {

47 commands . push_back (cmd) ;

48 }

49

50 /** Depends_On

51 *

52 * Scan the command list for CALLs/JUMPs and return their labels as a set */

53 Label_Set State :: Depends_On ()

54 {

55 Label_Set depends_on_set ;

56 Command_List_Iterator iter ;

57 Command * item ;

58

59 iter = commands . begin () ;

60 while (iter != commands . end ())

61 {

62 item = (* iter) ;

128

63

64 if ((item -> Get_Type () == Command :: JUMP)

65 || (item -> Get_Type () == Command :: CALL))

66 {

67 depends_on_set . insert (item -> Get_Data ()) ;

68 }

69 iter ++ ;

70 }

71 return depends_on_set ;

72 }

73

74 /** Generate_VHDL

75 *

76 * VHDL is generated for the state.

77 */

78 void State :: Generate_VHDL (FILE * output , State_Map * definitions)

79 {

80 Command_List_Iterator command_list_pos ;

81

82 fprintf (output , "\nwhen ") ;

83 Print_Binary (output , abs_state_number , width_of_state_number) ;

84 fprintf (output , " => -- 0x%04x (%d) %s\n" ,

85 abs_state_number , abs_state_number ,

86 state_name == 0L ? "none" : state_name) ;

87

88 command_list_pos = commands . begin () ;

89 while (command_list_pos != commands . end ())

90 {

91 Command * current_command = (* command_list_pos) ;

92 State * target_mc ;

93

94 switch (current_command -> Get_Type ())

95 {

96 case Command :: VHDL :

97 fputs (current_command -> Get_Data () , output) ;

98 fputs ("\n" , output) ;

99 break ;

100 case Command :: IDECODE :

101 /* Instruction decode. This is much like a CALL,

102 * except the address to be called comes from the

103 * instruction decoding logic. */

104 fprintf (output , "\n\t-- Instruction decode.\n"

105 "\tcall_state <= decoded_state ;\n"

106 "\tcall_requested <= ’1’ ;\n"

107 "\treturn_requested <= ’0’ ;\n") ;

108 break ;

109 case Command :: JUMP :

110 case Command :: CALL :

111 /* The target machine should be part of this machine

112 * already if the dependencies have been properly

113 * satisfied. If it is not, we stop now. */

114 assert (definitions -> count

115 (current_command -> Get_Data ()) != 0) ;

116

117 target_mc = (* definitions) [current_command -> Get_Data ()] ;

118

119 assert (target_mc != 0) ;

120

121 fprintf (output ,

122 "\n\t-- %s %s:\n"

123 "\tcall_state <= " ,

124 (current_command -> Get_Type () == Command :: CALL) ?

125 "CALL" : "JUMP" ,

126 current_command -> Get_Data ()) ;

127

128 Print_Binary (output ,

129 target_mc -> abs_state_number , /* target state */

130 width_of_state_number) ;

131

132 fprintf (output , " ;\n"

133 "\tcall_requested <= ’1’ ;\n"

134 "\treturn_requested <= ’%d’ ;\n" ,

135 (current_command -> Get_Type () == Command :: CALL) ?

136 0 : 1) ;

129

137 break ;

138 case Command :: RETURN :

139 fprintf (output ,

140 "\treturn_requested <= ’1’ ;\n") ;

141 break ;

142 default :

143 assert (0) ;

144 }

145 command_list_pos ++ ;

146 }

147 }

148

149 /** Generate_Link_To_State_VHDL

150 *

151 * Instruction decoder VHDL is generated to cause a jump to the state.

152 */

153 void State :: Generate_Link_To_State_VHDL (FILE * output ,

154 const char * indent)

155 {

156 fprintf (output , "%sdecoded_state <= " , indent) ;

157

158 Print_Binary (output , abs_state_number ,

159 width_of_state_number) ;

160

161 fprintf (output , " ; -- (%s)\n" ,

162 state_name == 0L ? "none" : state_name) ;

163 }

164

165 /** Set_State_Name

166 *

167 * Changes the name of the state. If the name is already known,

168 * the space is freed before it is changed.

169 */

170 void State :: Set_State_Name (const char * name)

171 {

172 if (state_name != 0L)

173 {

174 delete [] state_name ;

175 }

176 state_name = Copy_String (name) ;

177 }

178

179 /****** Command public methods ******/

180

181 /** Command constructor

182 *

183 * Creates a new Command class.

184 */

185 Command :: Command (Command_Type t , const char * cmd_data)

186 {

187 type = t ;

188 if (cmd_data == 0L)

189 {

190 data = 0L ;

191 } else {

192 data = Copy_String (cmd_data) ;

193 }

194 }

195

196 /** Command destructor

197 *

198 * Deletes a Command class.

199 */

200 Command :: ~Command ()

201 {

202 /* Free the data associated with the command, if any */

203 if (data != 0L)

204 {

205 delete [] data ;

206 }

207 }

208

130

G.17. Source code of state.h
1 #ifndef STATE_H

2 #define STATE_H

3

4 #include <stdio.h>

5

6 #include <set>

7 #include <map>

8 #include <list>

9 #include <string>

10

11 #include "optimisation.h"

12

13 /* The label set is used for passing around lists of dependencies on

14 * particular state labels */

15 typedef set<const char *> Label_Set ;

16 typedef Label_Set :: iterator Label_Set_Iterator ;

17

18 class State ;

19

20 /* The Command class maintains details of a single command. There are

21 * 1 or more commands in a state. */

22

23 class Command

24 {

25 public:

26 enum Command_Type { UNKNOWN_TYPE , CALL , RETURN ,

27 JUMP , VHDL , IDECODE } ;

28

29 Command (Command_Type t , const char * cmd_data = 0L) ;

30 virtual ~Command () ;

31

32 Command_Type Get_Type ()

33 { return type ; } ;

34 const char * Get_Data ()

35 { return data ; } ;

36

37 private:

38 Command_Type type ;

39 const char * data ;

40 } ;

41

42 typedef list<Command *> Command_List ;

43 typedef Command_List :: iterator Command_List_Iterator ;

44

45 /* The state map maintains a link between a label name and the state

46 * it refers to. */

47

48 struct Strings_Less

49 {

50 bool operator () (string s1 , string s2) const

51 {

52 return strcmp (s1 . c_str () , s2 . c_str ()) < 0 ;

53 }

54 } ;

55

56 typedef map<string , State * , Strings_Less> State_Map ;

57 typedef State_Map :: iterator State_Map_Iterator ;

58

59 /* The state command maintains details of a single state in the state

60 * machine. There are 1 or more states in a state machine. */

61

62 class State

63 {

64 public:

65 State () { state_name = 0L ; } ;

66 virtual ~State () ;

67

68 void Add_Command (Command * cmd) ;

69 Label_Set Depends_On () ;

70 void Generate_VHDL (FILE * output , State_Map * definitions) ;

71 void Generate_Link_To_State_VHDL (FILE * output , const char * indent) ;

72

131

73 void Set_Abs_State_Number (int n)

74 { abs_state_number = n ; } ;

75 void Set_Width_Of_State_Number (int n)

76 { width_of_state_number = n ; } ;

77 void Set_State_Name (const char * name) ;

78 bool Is_Empty ()

79 { return commands . empty () ; } ;

80

81 private:

82 Command_List commands ;

83 int abs_state_number ;

84 int width_of_state_number ;

85 const char * state_name ;

86 } ;

87

88 typedef list<State *> State_List ;

89 typedef State_List :: iterator State_List_Iterator ;

90

91 #endif

92

G.18. Source code of state machine.cc
1

2 #include <stdio.h>

3 #include <string.h>

4 #include <stdlib.h>

5 #include <assert.h>

6 #include <limits.h>

7

8 #include <map>

9 #include <list>

10 #include <iostream>

11

12 #include "utils.h"

13 #include "state_machine.h"

14

15 /****** State_Machine public methods ******/

16

17 /** State_Machine constructor

18 *

19 * Create a new state machine from the given source file.

20 */

21 State_Machine :: State_Machine (const char * source_file)

22 {

23 const int NUMFIELDS = 2 ;

24 regmatch_t matches [NUMFIELDS + 1] ;

25 State * current_state = new State () ;

26 FILE * input = fopen (source_file , "rt") ;

27 char str [MAX_LINE_LEN + 1] ;

28 int line_no = 0 ;

29 int rc ;

30 regex_t statement_with_parameter_regex ;

31 regex_t statement_without_parameter_regex ;

32

33 /* Compile regular expressions */

34 rc = regcomp (& statement_with_parameter_regex ,

35 "^[\t]*(CALL|JUMP|LABEL) +([A-Za-z0-9_]+)[\t]*$" ,

36 REG_EXTENDED) ;

37 assert (rc == 0) ;

38

39 rc = regcomp (& statement_without_parameter_regex ,

40 "^[\t]*(CLOCK|RETURN|IDECODE)[\t]*$" , REG_EXTENDED) ;

41 assert (rc == 0) ;

42

43 /* Begin building the state list */

44 states . push_back (current_state) ;

45

46 if (input == 0L)

47 {

48 throw new File_Access_Exception (source_file) ;

49 }

50

132

51 /* Read in lines from the machine definition. */

52 while (fgets (str , MAX_LINE_LEN , input) != NULL)

53 {

54 line_no ++ ;

55

56 Remove_Trailing_Newlines (str) ;

57

58 if (regexec (& statement_with_parameter_regex ,

59 str , NUMFIELDS + 1 , matches , 0) == 0)

60 {

61 /* This is one of the state machine statements */

62 char * statement_name = Get_Regex_Match (str , & matches [1]) ;

63 char * parameter_name = Get_Regex_Match (str , & matches [2]) ;

64

65 if (strcmp (statement_name , "JUMP") == 0)

66 {

67 current_state -> Add_Command (

68 new Command (Command :: JUMP , parameter_name)) ;

69 } else if (strcmp (statement_name , "CALL") == 0)

70 {

71 current_state -> Add_Command (

72 new Command (Command :: CALL , parameter_name)) ;

73 } else if (strcmp (statement_name , "LABEL") == 0)

74 {

75 /* This state is being assigned a label. */

76

77 char * label_name = parameter_name ;

78

79 /* We add the label to the label definitions table */

80 if (definitions . count (string (label_name)) > 0)

81 {

82 throw new Duplicate_Label_Exception (label_name) ;

83 }

84

85 definitions [string (label_name)] = current_state ;

86

87 /* For convenience, we also store the state name in the

88 * state itself */

89 current_state -> Set_State_Name (label_name) ;

90 } else {

91 assert (0) ;

92 }

93 delete [] statement_name ;

94 delete [] parameter_name ;

95 } else if (regexec (& statement_without_parameter_regex , str , 2 ,

96 matches , 0) == 0)

97 {

98 char * statement_name = Get_Regex_Match (str , & matches [1]) ;

99

100 if (strcmp (statement_name , "RETURN") == 0)

101 {

102 current_state -> Add_Command (

103 new Command (Command :: RETURN)) ;

104 } else if (strcmp (statement_name , "IDECODE") == 0)

105 {

106 current_state -> Add_Command (

107 new Command (Command :: IDECODE)) ;

108 } else if (strcmp (statement_name , "CLOCK") == 0)

109 {

110 /* That’s the end of state marker. Create a new state. */

111 current_state = new State () ;

112 /* and add it to the list of states */

113 states . push_back (current_state) ;

114 } else {

115 assert (0) ;

116 }

117 delete [] statement_name ;

118 } else if (String_Contains_Non_Whitespace (str))

119 {

120 /* This is a VHDL statement or a comment or something

121 like that. We don’t care precisely what it is. */

122 current_state -> Add_Command (

123 new Command (Command :: VHDL , str)) ;

124 }

133

125 }

126 fclose (input) ;

127

128 /* A common error is to omit the CLOCK from the last state in the

129 machine. We can check for that here: does the last state have

130 anything in it? */

131

132 if (! current_state -> Is_Empty ())

133 {

134 throw new Missing_Clock_Exception (source_file) ;

135 }

136

137 /* Remove last state, since it has no CLOCK */

138 states . pop_back () ;

139 delete current_state ;

140

141 /* We also check that the machine has some states in it. An empty

142 machine is a mistake! */

143 if (states . empty ())

144 {

145 throw new Empty_Machine_Exception (source_file) ;

146 }

147

148 /* Store the name of the state machine */

149 name = Copy_String (source_file) ;

150

151 /* Free the regular expressions */

152 regfree (& statement_without_parameter_regex) ;

153 regfree (& statement_with_parameter_regex) ;

154

155 is_finalised = false ;

156 }

157

158 /** State_Machine empty constructor

159 *

160 * A new empty state machine is created.

161 */

162 State_Machine :: State_Machine ()

163 {

164 is_finalised = false ;

165 name = Copy_String ("unnamed") ;

166 }

167

168 /** State_Machine destructor

169 *

170 * Destroys the state machine and _all_ related memory.

171 */

172 State_Machine :: ~State_Machine ()

173 {

174 /* Free the state list */

175 State_List_Iterator iter ;

176 State * item ;

177

178 iter = states . begin () ;

179 while (iter != states . end ())

180 {

181 item = (* iter) ;

182 delete item ;

183 iter ++ ;

184 }

185

186 delete [] name ;

187 }

188

189 /** Incorporate_Sub_Machine

190 *

191 * The given state machine is incorporated into the current state machine.

192 * This is intended to be done in order to bring in other machines required

193 * to satisfy dependencies. The sub machine is left empty.

194 */

195 void State_Machine :: Incorporate_Sub_Machine (State_Machine * sub_machine)

196 {

197 assert (! is_finalised) ;

198

134

199 /* Move the contents of the sub machine into this one:

200 * states and definitions */

201 MESSAGE2 ("Incorporating sub machine %s.\n" , Get_Name ()) ;

202

203 /* Copy the states */

204 State_List_Iterator state_list_iter ;

205

206 state_list_iter = sub_machine -> states . begin () ;

207 while (state_list_iter != sub_machine -> states . end ())

208 {

209 State * item = (* state_list_iter) ;

210

211 states . push_back (item) ;

212

213 state_list_iter ++ ;

214 }

215

216 /* Copy the definitions */

217 State_Map_Iterator state_map_iter ;

218

219 state_map_iter = sub_machine -> definitions . begin () ;

220 while (state_map_iter != sub_machine -> definitions . end ())

221 {

222 const char * label = (* state_map_iter) . first . c_str () ;

223 State * state = (* state_map_iter) . second ;

224

225 if (definitions . count (string (label)) > 0)

226 {

227 throw new Duplicate_Label_Exception (label) ;

228 }

229 definitions [string (label)] = state ;

230

231 state_map_iter ++ ;

232 }

233

234 /* Now delete the contents of the sub machine.. This is essential

235 * to prevent the memory that makes them up being deleted when

236 * the sub machine is deleted. */

237 sub_machine -> states . clear () ;

238 sub_machine -> definitions . clear () ;

239 }

240

241 /** Compile_Machine

242 *

243 * Generates the VHDL for the state machine, sending it to the given

244 * output device. This can only be done once all the dependencies

245 * for the machine, as listed by Depends_On(), have been satisfied.

246 * Assertions will fail if dependencies haven’t been satisfied.

247 */

248 void State_Machine :: Compile_Machine (FILE * output)

249 {

250 int width_of_state_number ;

251 State_List_Iterator state_list_pos ;

252

253

254 if (! is_finalised)

255 {

256 /* Add absolute state numbers to all states */

257 Calculate_Abs_State_Numbers () ;

258 }

259

260 width_of_state_number = Get_Width_Of_State_Number () ;

261

262 MESSAGE2 ("Number of states: %d\n"

263 "Width of state number (bits): %d\n" ,

264 states . size () , width_of_state_number) ;

265

266 /* Must be in a process sensitive to ’state’ and ’clock’ */

267 fprintf (output ,

268 "-- Start automatically generated state machine logic.\n"

269 "\tcall_requested <= ’0’ ;\n"

270 "\treturn_requested <= ’0’ ;\n"

271 "\tcall_state <= (others => ’0’) ;\n\n"

272 "\tcase state is\n") ;

135

273

274 state_list_pos = states . begin () ;

275 while (state_list_pos != states . end ())

276 {

277 State * current_state = (* state_list_pos) ;

278

279 current_state -> Generate_VHDL (output , & definitions) ;

280

281 state_list_pos ++ ;

282 }

283

284 fprintf (output ,

285 "when others => null ;\n"

286 "\tend case ;\n\n"

287 "-- End automatically generated state machine logic.\n") ;

288 }

289

290 /** Depends_On

291 *

292 * Return a list of states that this machine depends upon.

293 * Essentially, this is the set of all states that are JUMPed

294 * or CALLed, minus the set of locations within this machine. */

295 Label_Set State_Machine :: Depends_On ()

296 {

297 Label_Set depends_on_set ;

298 State_List_Iterator state_iter ;

299 State * state ;

300

301 state_iter = states . begin () ;

302 while (state_iter != states . end ())

303 {

304 state = (* state_iter) ;

305

306 Label_Set state_depends_on_set = state -> Depends_On () ;

307 Label_Set_Iterator label_iter ;

308

309 label_iter = state_depends_on_set . begin () ;

310 while (label_iter != state_depends_on_set . end ())

311 {

312 const char * label = (* label_iter) ;

313

314 depends_on_set . insert (label) ;

315

316 label_iter ++ ;

317 }

318

319 state_iter ++ ;

320 }

321

322 /* Now we have the set of all states reached by a JUMP or CALL

323 * from this machine. Remove all the states provided by this machine. */

324

325 Label_Set provides_set = Provides () ;

326 Label_Set_Iterator label_iter ;

327

328 label_iter = provides_set . begin () ;

329 while (label_iter != provides_set . end ())

330 {

331 const char * label = (* label_iter) ;

332

333 if (depends_on_set . count (label) != 0)

334 {

335 /* This label is depended upon by this machine, but it is

336 * also provided by this machine. */

337 label_iter ++ ;

338

339 depends_on_set . erase (label) ;

340 } else {

341 label_iter ++ ;

342 }

343 }

344

345 return depends_on_set ;

346 }

136

347

348 /** Provides

349 *

350 * Return the set of labels provided by this machine. This

351 * is simply the set of keys of the "definitions" map */

352 Label_Set State_Machine :: Provides ()

353 {

354 Label_Set provides_set ;

355 State_Map_Iterator iter ;

356

357 iter = definitions . begin () ;

358 while (iter != definitions . end ())

359 {

360 const char * label = (* iter) . first . c_str () ;

361

362 provides_set . insert (label) ;

363

364 iter ++ ;

365 }

366

367 return provides_set ;

368 }

369

370 /** Finalise_SM

371 *

372 * The state machine is finalised - no more changes can be made to it.

373 */

374 void State_Machine :: Finalise_SM ()

375 {

376 assert (! is_finalised) ;

377 Calculate_Abs_State_Numbers () ;

378 is_finalised = true ;

379 }

380

381 /** Get_State_For_Name

382 *

383 * Convert a state name into a State object, if possible.

384 */

385 State * State_Machine :: Get_State_For_Name (const char * sub_name)

386 {

387 if (definitions . count (string (sub_name)) > 0)

388 {

389 return definitions [string (sub_name)] ;

390 } else {

391 return 0L ;

392 }

393 }

394

395 /****** State_Machine private methods ******/

396

397 /** Calculate_Abs_State_Numbers

398 *

399 * Work out the absolute state numbers of all the states in the database.

400 */

401 void State_Machine :: Calculate_Abs_State_Numbers ()

402 {

403 MESSAGE2 ("Calculating absolute state numbers.\n") ;

404

405 State_List_Iterator pos ;

406 int abs_state_number = 0 ;

407

408 pos = states . begin () ;

409 while (pos != states . end ())

410 {

411 State * state = (* pos) ;

412

413 state -> Set_Abs_State_Number (abs_state_number) ;

414

415 abs_state_number ++ ;

416

417 pos ++ ;

418 }

419

420 /* Program the width of each state number. */

137

421 int width_of_state_number = Get_Width_Of_State_Number () ;

422

423 pos = states . begin () ;

424 while (pos != states . end ())

425 {

426 State * state = (* pos) ;

427

428 state -> Set_Width_Of_State_Number (width_of_state_number) ;

429

430 abs_state_number ++ ;

431

432 pos ++ ;

433 }

434 }

435

G.19. Source code of state machine.h
1 #ifndef STATE_MACHINE_H

2 #define STATE_MACHINE_H

3

4 #include <stdio.h>

5 #include <regex.h>

6

7 #include <set>

8 #include <map>

9 #include <list>

10

11 #include "exceptions.h"

12 #include "state.h"

13 #include "utils.h"

14 #include "optimisation.h"

15

16 /* The state machine class. This is able to read in a state machine

17 * description, produce the VHDL it represents, and calculate the

18 * dependencies of the machine. Other state machines can be merged in. */

19 class State_Machine

20 {

21 public:

22 State_Machine (const char * source_file) ;

23 State_Machine () ;

24 virtual ~State_Machine () ;

25

26 void Compile_Machine (FILE * output) ;

27

28 void Incorporate_Sub_Machine (State_Machine * sub_machine) ;

29

30 Label_Set Depends_On () ;

31 Label_Set Provides () ;

32

33 void Finalise_SM () ;

34

35 bool Is_Finalised ()

36 { return is_finalised ; } ;

37

38 State * Get_State_For_Name (const char * sub_name) ;

39

40 int Get_Width_Of_State_Number ()

41 { return Get_Number_Of_Bits_Needed_For

42 (states . size () - 1) ; } ;

43

44 const char * Get_Name ()

45 { return name ; } ;

46 private:

47 void Calculate_Abs_State_Numbers () ;

48

49 State_List states ;

50 State_Map definitions ;

51 bool is_finalised ;

52 const char * name ;

53 } ;

54

55 #endif

138

56

G.20. Source code of state machine loader.cc
1 #include <stdio.h>

2 #include <string.h>

3 #include <stdlib.h>

4 #include <assert.h>

5 #include <limits.h>

6

7 #include <sys/types.h>

8 #include <dirent.h>

9 #include <fnmatch.h>

10

11 #include <map>

12 #include <list>

13 #include <iostream>

14

15 #include "utils.h"

16 #include "state_machine_loader.h"

17

18 /****** State_Machine public methods ******/

19

20 /** State_Machine_Loader destructor

21 *

22 * All state machines are deleted.

23 */

24 State_Machine_Loader :: ~State_Machine_Loader ()

25 {

26 State_Machine_Set_Iterator iter = machines . begin () ;

27

28 while (iter != machines . end ())

29 {

30 State_Machine * item = (* iter) ;

31

32 delete item ;

33

34 iter ++ ;

35 }

36 }

37

38 /** Add_State_Machine

39 *

40 * A state machine is loaded from the given file, and added to the loader’s

41 * internal database.

42 */

43 void State_Machine_Loader :: Add_State_Machine (const char * filename)

44 {

45 assert (! is_finalised) ;

46

47 MESSAGE2 ("Loading state machine file %s\n" , filename) ;

48

49 State_Machine * sm = new State_Machine (filename) ;

50

51 /* The new state machine is added to the list of machines */

52 machines . insert (sm) ;

53

54 /* The provides list of the machine is examined. */

55 Label_Set provides_list = sm -> Provides () ;

56 Label_Set_Iterator iter = provides_list . begin () ;

57

58 while (iter != provides_list . end ())

59 {

60 const char * state_name = (* iter) ;

61

62 if (provides_map . count (string (state_name)) > 0)

63 {

64 throw new Duplicate_Label_Exception (state_name) ;

65 }

66 provides_map [string (state_name)] = sm ;

67

68 iter ++ ;

69 }

139

70 }

71

72 /** Add_State_Machine_Directory

73 *

74 * All state machine (.sm) files are loaded from the given directory.

75 */

76 void State_Machine_Loader :: Add_State_Machine_Directory (const char * dir)

77 {

78 assert (! is_finalised) ;

79

80 DIR * dird = opendir (dir) ;

81 struct dirent * entry ;

82

83 if (dird == 0L)

84 {

85 throw new Dir_Access_Exception (dir) ;

86 }

87 MESSAGE ("Scanning state machine directory %s\n" , dir) ;

88

89 while ((entry = readdir (dird)) != NULL)

90 {

91 char * filename = new char [strlen (entry -> d_name)

92 + strlen (dir) + 2] ;

93 strcpy (filename , dir) ;

94 strcat (filename , "/") ;

95 strcat (filename , entry -> d_name) ;

96

97 if (fnmatch (STATE_MACHINE_GLOB , filename , 0) == 0)

98 {

99 Add_State_Machine (filename) ;

100 }

101

102 delete [] filename ;

103 }

104 closedir (dird) ;

105 }

106

107 /** Require_Microsub

108 *

109 * Indicate to the database that a particular microsubroutine is required.

110 */

111 void State_Machine_Loader :: Require_Microsub (const char * sub_name)

112 {

113 assert (! is_finalised) ;

114

115 /* The machine containing this subroutine will certainly be required. */

116 MESSAGE2 ("Adding microsubroutine %s.." , sub_name) ;

117 State_Machine * sm = Get_State_Machine_For_Name (sub_name) ;

118

119 /* Is sm already on the required list of machines? */

120 if (required_machines . count (sm) == 0)

121 {

122 /* No... add it now. */

123 required_machines . insert (sm) ;

124

125 MESSAGE2 ("added\n") ;

126 /* Also add everything it depends on */

127 Require_Microsubs (sm -> Depends_On ()) ;

128 } else {

129 MESSAGE2 ("already present\n") ;

130 }

131 }

132

133 /** Require_Microsubs

134 *

135 * Indicate to the database that all the members of a set of

136 * microsubroutines are required.

137 */

138 void State_Machine_Loader :: Require_Microsubs (Label_Set list)

139 {

140 assert (! is_finalised) ;

141

142 Label_Set_Iterator iter = list . begin () ;

143

140

144 while (iter != list . end ())

145 {

146 const char * state_name = (* iter) ;

147 Require_Microsub (state_name) ;

148

149 iter ++ ;

150 }

151 }

152

153 /** Build_Master_Machine

154 *

155 * Creates a new state machine containing all the machines required

156 * to execute the program.

157 *

158 * Once called, no more changes can be made to the state machine loader

159 * database (they could invalidate the machine).

160 */

161 State_Machine * State_Machine_Loader :: Build_Master_Machine (

162 const char * root_sub_name)

163 {

164 if (is_finalised)

165 {

166 /* machine already built */

167 return master_machine ;

168 }

169

170 MESSAGE ("Building master state machine..\n") ;

171

172 /* The master machine is based on the machine containing the

173 * root subroutine named here.

174 * Ensure that all dependencies are met, and that the

175 * named subroutine exists. */

176 Require_Microsub (root_sub_name) ;

177

178 master_machine = Get_State_Machine_For_Name (root_sub_name) ;

179

180 /* Add all other required machines to the master machine. This

181 * will effectively concatenate them on the end. */

182 State_Machine_Set required_machines_copy = required_machines ;

183 State_Machine_Set_Iterator iter ;

184

185 required_machines_copy . erase (master_machine) ;

186

187 iter = required_machines_copy . begin () ;

188 while (iter != required_machines_copy . end ())

189 {

190 State_Machine * item = (* iter) ;

191

192 master_machine -> Incorporate_Sub_Machine (item) ;

193

194 iter ++ ;

195 }

196

197 is_finalised = true ; /* No more changes can be made to the database */

198

199 master_machine -> Finalise_SM () ;

200

201 /* Debugging information */

202 MESSAGE2 ("State machine report:\n") ;

203 iter = machines . begin () ;

204 while (iter != machines . end ())

205 {

206 State_Machine * item = (* iter) ;

207

208 if (required_machines . count (item) > 0)

209 {

210 MESSAGE2 ("includes %s\n" , item -> Get_Name ()) ;

211 } else {

212 MESSAGE2 (" omits %s\n" , item -> Get_Name ()) ;

213 }

214 iter ++ ;

215 }

216 MESSAGE2 ("Total: %d machines of %d included.\n" ,

217 required_machines . size () , machines . size ()) ;

141

218

219 return master_machine ;

220 }

221

222 /** Get_State_Machine_For_Name

223 *

224 * Finds the state machine which provides the given state/microsubroutine.

225 */

226 State_Machine * State_Machine_Loader ::

227 Get_State_Machine_For_Name (const char * sub_name)

228 {

229 if (provides_map . count (string (sub_name)) == 0)

230 {

231 /* This subroutine doesn’t seem to exist! */

232 throw new Unavailable_Microsub_Exception (sub_name) ;

233 }

234 return provides_map [string (sub_name)] ;

235 }

236

G.21. Source code of state machine loader.h
1

2 #ifndef STATE_MACHINE_LOADER_H

3 #define STATE_MACHINE_LOADER_H

4

5 #include <set>

6

7 #include "state.h"

8 #include "state_machine.h"

9

10 typedef set<State_Machine *> State_Machine_Set ;

11 typedef State_Machine_Set :: iterator State_Machine_Set_Iterator ;

12

13 typedef map<string , State_Machine * , Strings_Less> Provides_Map ;

14 typedef Provides_Map :: iterator Provides_Map_Iterator ;

15

16 class State_Machine_Loader

17 {

18 public:

19 State_Machine_Loader () { is_finalised = false ; } ;

20 virtual ~State_Machine_Loader () ;

21

22 void Require_Microsub (const char * sub_name) ;

23 void Require_Microsubs (Label_Set list) ;

24 void Add_State_Machine (const char * filename) ;

25 void Add_State_Machine_Directory (const char * dir) ;

26

27 State_Machine * Build_Master_Machine (const char * root_sub_name) ;

28

29 State_Machine * Get_State_Machine_For_Name (const char * sub_name) ;

30

31 private:

32 Provides_Map provides_map ;

33 State_Machine_Set machines ;

34 State_Machine_Set required_machines ;

35 bool is_finalised ;

36 State_Machine * master_machine ;

37 } ;

38

39 #endif

40

G.22. Source code of utils.cc
1

2 #include <string.h>

3 #include <regex.h>

4 #include <assert.h>

5 #include <ctype.h>

6

142

7 #include "utils.h"

8

9 int g_verbose_setting ;

10

11 /* This procedure deletes the newline character and everything

12 * after it from the supplied string. If no newline character

13 * is present, the string is unchanged. */

14 void Remove_Trailing_Newlines (char * str)

15 {

16 char * newline_index = index (str , ’\n’) ;

17

18 if (newline_index != NULL)

19 {

20 newline_index [0] = ’\0’ ;

21 }

22 }

23

24 /* Extracts a particular regular expression match substring from

25 * match_str. An assertion fails if the regex function didn’t find any

26 * substring to match the specified pattern.. i.e. if the match

27 * parameter is not valid.

28 *

29 * Note: a deep copy of the substring is made that will need to be freed

30 * later. */

31 char * Get_Regex_Match (const char * match_str , regmatch_t * match)

32 {

33 int length_of_string = (match -> rm_eo - match -> rm_so) ;

34 char * substring ;

35

36 assert (match -> rm_so >= 0) ;

37 assert (length_of_string >= 0) ;

38

39 substring = new char [sizeof (char) * (length_of_string + 1)] ;

40

41 memcpy (substring , & match_str [match -> rm_so] ,

42 length_of_string) ;

43 substring [length_of_string] = ’\0’ ;

44

45 return substring ;

46 }

47

48 /* Compute the minimum number of bits required to represent

49 * the integer parameter. */

50 int Get_Number_Of_Bits_Needed_For (int parameter)

51 {

52 if (parameter <= 2)

53 {

54 return 1 ;

55 }

56

57 int width = 0 ;

58

59 while (parameter > 0)

60 {

61 parameter = parameter >> 1 ;

62 width ++ ;

63 }

64

65 return width ;

66 }

67

68 /** Print_Binary

69 *

70 * Prints a number in binary. The given binary number is sent to the

71 * specified stream, surrounded by double quotes.

72 */

73 void Print_Binary (FILE * fd , int number , int width)

74 {

75 const char * s = Binary_To_String (number , width) ;

76

77 fprintf (fd , "\"%s\"" , s) ;

78

79 delete [] s ;

80 }

143

81

82 /** Binary_To_String

83 *

84 * Creates a new string, of length ’width+1’, and puts the

85 * given binary number in the string.

86 */

87 const char * Binary_To_String (int number , int width)

88 {

89 char * str = new char [width + 1] ;

90

91 str [width] = ’\0’ ;

92 for (int i = width - 1 ; i >= 0 ; i --)

93 {

94 str [(width - 1) - i] = ((number >> i) & 1) ? ’1’ : ’0’ ;

95 }

96 return str ;

97 }

98

99 /** Copy_String

100 *

101 * The same as ’strdup’, but uses ’new’, not ’malloc’.

102 */

103 const char * Copy_String (const char * original)

104 {

105 char * str = new char [strlen (original) + 1] ;

106

107 strcpy (str , original) ;

108 return str ;

109 }

110

111 /* Returns true if the string contains any non-whitespace characters */

112 bool String_Contains_Non_Whitespace (const char * str)

113 {

114 int i ;

115

116 for (i = strlen (str) - 1 ; i >= 0 ; i --)

117 {

118 if (! isspace (str [i]))

119 {

120 return true ;

121 }

122 }

123 return false ;

124 }

125

126 /* Removes whitespace characters from the beginning and end of the string */

127 void Remove_Whitespace_From_Ends (char * str)

128 {

129 unsigned i = strlen (str) - 1 ;

130

131 /* First remove whitespace from the end of the string. */

132 for (; i >= 0 ; i --)

133 {

134 if (isspace (str [i]))

135 {

136 str [i] = ’\0’ ;

137 } else {

138 break ;

139 }

140 }

141 /* Now, remove whitespace from the beginning */

142 for (i = 0 ; i < strlen (str) ; i ++)

143 {

144 if (! isspace (str [i]))

145 {

146 break ;

147 }

148 }

149 /* str[i] is the first non-whitespace character.

150 * Move str[i] to str[0], copying the null terminator as well. */

151 if ((i > 0)

152 && (i < strlen (str)))

153 {

154 memmove (& str [0] , & str [i] , strlen (& str [i]) + 1) ;

144

155 }

156 }

157

G.23. Source code of utils.h
1

2 #ifndef UTILS_H

3 #define UTILS_H

4

5 #include <stdio.h>

6 #include <regex.h>

7

8 extern int g_verbose_setting ;

9

10 #define VERBOSE_OFF 0

11 #define VERBOSE_LOW 1

12 #define VERBOSE_MEDIUM 2

13 #define VERBOSE_HIGH 3

14 #define VERBOSE_VERY_HIGH 4

15

16 #define MESSAGE if (g_verbose_setting >= VERBOSE_LOW) printf

17 #define MESSAGE2 if (g_verbose_setting >= VERBOSE_MEDIUM) printf

18 #define MESSAGE3 if (g_verbose_setting >= VERBOSE_HIGH) printf

19 #define MESSAGE4 if (g_verbose_setting >= VERBOSE_VERY_HIGH) printf

20

21

22 /* This procedure deletes the newline character and everything

23 * after it from the supplied string. If no newline character

24 * is present, the string is unchanged. */

25 void Remove_Trailing_Newlines (char * str) ;

26

27 /* Extracts a particular regular expression match substring from

28 * match_str. An assertion fails if the regex function didn’t find any

29 * substring to match the specified pattern.. i.e. if the match

30 * parameter is not valid.

31 *

32 * Note: a deep copy of the substring is made that will need to be freed

33 * later. */

34 char * Get_Regex_Match (const char * match_str , regmatch_t * match) ;

35

36 /* Compute the minimum number of bits required to represent

37 * the integer parameter. */

38 int Get_Number_Of_Bits_Needed_For (int parameter) ;

39

40 void Print_Binary (FILE * fd , int number , int width) ;

41

42 bool String_Contains_Non_Whitespace (const char * str) ;

43

44 void Remove_Whitespace_From_Ends (char * str) ;

45

46 const char * Binary_To_String (int number , int width) ;

47

48 const char * Copy_String (const char * original) ;

49

50 #endif

51

H. The Opcode Database

H.1. Source code of opcode map
1

2 #BIT PATTERN OP DEA SUBROUTINE OPTIMS COMMENTS

3 0000 000 0SS EEEEEE ORI aip alu_i_family |Ee ea <- [ea] | immediate

4 0000 000 000 111100 ORICCR | CCR <- CCR | immediate [byte]

5 0000 000 001 111100 ORISR | SR <- SR | immediate [word]

6 0000 0SS 011 EEEEEE CHK2 Ee 68020 only

7 0000 RRR 100 EEEEEE BTST a Ee Dynamic Bit on D(RRR) in [ea]

8 0000 RRR 1TT EEEEEE Btt aip Ee Dynamic Bit on D(RRR) in [ea]

145

9 0000 RRR 10Z 001rrr MOVEP D(RRR) <- [A(rrr) + d]

10 0000 RRR 11Z 001rrr MOVEPR A(rrr) + d <- D(RRR)

11 0000 001 0SS EEEEEE ANDI aip alu_i_family &Ee ea <- [ea] & immediate

12 0000 001 000 111100 ANDICCR & CCR <- CCR & immediate [byte]

13 0000 001 001 111100 ANDISR & SR <- SR & immediate [word]

14 0000 010 0SS EEEEEE SUBI aip alu_i_family -Ee ea <- [ea] - immediate

15 0000 011 0SS EEEEEE ADDI aip alu_i_family +Ee ea <- [ea] + immediate

16 0000 011 011 00DRRR RTM 68020 only

17 0000 011 011 EEEEEE CALLM adri Ee 68020 only

18 0000 11Z 011 EEEEEE CAS adip Ee 68020 only

19 0000 100 000 EEEEEE BTSTS ai Ee Static bit on <imm byte> bit in [ea]

20 0000 100 0TT EEEEEE BttS aip Ee Static bit on <imm byte> bit in [ea]

21 0000 101 0SS EEEEEE EORI aip alu_i_family ^Ee ea <- [ea] ^ immediate

22 0000 101 000 111100 EORICCR ^ CCR <- CCR ^ immediate [byte]

23 0000 101 001 111100 EORISR ^ SR <- SR ^ immediate [word]

24 0000 110 0SS EEEEEE CMPI ai alu_i_cmp cEe [ea] - immediate CMP

25 0000 111 0SS EEEEEE MOVES adip Ee 68010 only

26

27 00ss MMM MMM eeeeee MOVE aip move_family EMem ea <- [sea]

28 0010 RRR 001 EEEEEE MOVEAL move_family EMem A(RRR) <- [ea]

29 0011 RRR 001 EEEEEE MOVEAW move_family EMem A(RRR) <- [ea] [word mode w/ sign ex]

30

31 0100 000 0SS EEEEEE NEGX aip Ee ea <- 0 - [ea] - X

32 0100 000 011 EEEEEE MOVEsr aip Ee ea <- SR [word mode]

33 0100 RRR 1a0 EEEEEE CHK a Ee TRAP if D(RRR) < 0 or D(RRR) > [ea]

34 0100 RRR 111 EEEEEE LEA adri lea Ee A(RRR) <- ea

35 0100 001 0SS EEEEEE CLR aip clr Ee ea <- 0

36 0100 001 011 EEEEEE MOVEccr aip Ee 68010: ea <- CCR [word mode]

37 0100 010 0SS EEEEEE NEG aip Ee ea <- 0 - [ea]

38 0100 010 011 EEEEEE MOVEccr a Ee CCR <- [ea] [word mode]

39 0100 011 0SS EEEEEE NOT aip Ee ea <- ~[ea]

40 0100 011 011 EEEEEE MOVEsr a Ee SR <- [ea] [word mode]

41 0100 100 000 EEEEEE NBCD aip Ee decimal NEGX

42 0100 100 000 001RRR LINKL 68020: link long

43 0100 100 001 000RRR SWAP D(RRR)(15..0) <-> D(RRR)(31..16)

44 0100 100 001 001III BKPT 68010: hw breakpoint

45 0100 100 001 EEEEEE PEA adri pea Ee Push Effective Address

46 0100 100 010 000RRR EXT Extend byte to word, D(RRR)

47 0100 100 011 000RRR EXT Extend word to long, D(RRR)

48 0100 100 111 000RRR EXTB 68020: extend byte to long, D(RRR)

49 0100 100 01Z EEEEEE MOVEM ad+ip Ee EW1 details regs to transfer to memory

50 0100 101 0SS EEEEEE TST ai tst Ee [ea] CMP

51 0100 101 011 EEEEEE TAS aip Ee [ea] CMP, ea <- [ea] | 0x80. MP sync.

52 0100 101 011 111100 ILLEGAL illegal instruction

53 0100 110 00X EEEEEE MULU Ee 68020: long multiply/divide. AMs unknown.

54 0100 110 01Z EEEEEE MOVEM ad-i Ee EW1 details regs to transfer from memory

55

56 0100 111 001 010RRR LINK link word link to A(RRR)

57 0100 111 001 011RRR UNLK unlk unlink

58 0100 111 001 00IIII TRAP trap w/ immediate vector

59 0100 111 001 100RRR MOVEUSP USP <- A(RRR)

60 0100 111 001 101RRR MOVEUSP A(RRR) <- USP

61 0100 111 001 110000 RESET

62 0100 111 001 110001 NOP nop

63 0100 111 001 110010 STOP Like Z80 HALT, but with SR <- EW1

64 0100 111 001 110011 RTE Return from Exception

65 0100 111 001 110100 RTD 68010: RTS with displacement.

66 0100 111 001 110101 RTS rts

67 0100 111 001 110110 TRAPV if CCR[V], then vector (overflow)

68 0100 111 001 110111 RTR Return from sub with CCR restore

69 0100 111 001 11101X MOVEC 68010: move general reg to control reg

70 0100 111 010 EEEEEE JSR adri jsr Ee

71 0100 111 011 EEEEEE JMP adri jmp Ee

72

73 0101 III 0SS EEEEEE ADDQ ip alu_q_family +Ee ea <- [ea] + III

74 0101 CCC C11 EEEEEE Scc aip scc Ee if CONDITION then ea <- ~0 else ea <- 0

75 0101 CCC C11 001RRR DBcc aip decbranch if !CONDITION then D(RRR)--, PC <- PC + d

76 0101 CCC C11 11101X TRAPcc 68020: trap on condition. (word/long operand)

77 0101 CCC C11 111100 TRAPcc 68020: trap on condition. (no operand)

78 0101 III 1SS EEEEEE SUBQ ip alu_q_family -Ee ea <- [ea] - III

79 0110 ccc cII IIIIII Bcc branch if d=0, d=EW1. if d=255, d=EW1EW2. PC<-PC+d

80 0110 000 1II IIIIII BSR same as above wrt d. branch subroutine.

81 0111 RRR 0II IIIIII MOVEQ moveq D(RRR) <- d

82

146

83 1000 RRR 0SS EEEEEE OR a alu_no_family |Ee D(RRR) <- D(RRR) | [ea]

84 1000 RRR 1SS EEEEEE OR adip alu_no_family |Ee ea <- D(RRR) | [ea]

85 1000 RRR X11 EEEEEE DIV Ee DIVIDE

86 1000 RRR 100 00XRRR SBCD decimal subtract

87 1000 RRR 101 00XRRR PACK 68020

88 1000 RRR 110 00XRRR UNPK 68020

89 1001 RRR 0SS EEEEEE SUB alu_no_family -Ee D(RRR) <- D(RRR) - [ea]

90 1001 RRR 1SS EEEEEE SUB adip alu_no_family -Ee ea <- D(RRR) - [ea]

91 1001 RRR 011 EEEEEE SUBA alu_a_family -Ee ea <- A(RRR) - [ea] [word, sign ex]

92 1001 RRR 111 EEEEEE SUBA alu_a_family -Ee ea <- A(RRR) - [ea] [long]

93 1001 RRR 1SS 000rrr SUBX - D(RRR) <- D(RRR) - D(rrr) - X

94 1001 RRR 1SS 001rrr SUBX - [-A(RRR)]<-[A(RRR)]-[-A(rrr)] - X (predec)

95 1011 RRR 0SS EEEEEE CMP alu_no_cmp cEe D(RRR) - [ea] CMP

96 1011 RRR 011 EEEEEE CMPA alu_a_cmp cEe A(RRR) - [ea] CMP [word sign ex]

97 1011 RRR 111 EEEEEE CMPA alu_a_cmp cEe A(RRR) - [ea] CMP [long]

98 1011 RRR 1SS EEEEEE EOR aip alu_no_family ^Ee ea <- [ea] ^ D(RRR)

99 1011 RRR 1SS 001rrr CMPM c [-A(RRR)]-[-A(rrr)] CMP, memory compare

100

101 1100 RRR 0SS EEEEEE AND a alu_no_family &Ee D(RRR) <- D(RRR) & [ea]

102 1100 RRR 1SS EEEEEE AND adip alu_no_family &Ee ea <- D(RRR) & [ea]

103 1100 RRR X11 EEEEEE MULT Ee

104 1100 RRR 100 00XRRR ABCD decimal add

105 1100 RRR 101 000rrr EXCH D(RRR) <-> D(rrr)

106 1100 RRR 101 001rrr EXCH A(RRR) <-> A(rrr)

107 1100 RRR 110 001rrr EXCH D(RRR) <-> A(rrr)

108 1101 RRR 0SS EEEEEE ADD alu_no_family +Ee D(RRR) <- D(RRR) + [ea]

109 1101 RRR 1SS EEEEEE ADD adip alu_no_family +Ee ea <- D(RRR) + [ea]

110 1101 RRR 011 EEEEEE ADDA alu_a_family +Ee ea <- A(RRR) + [ea] [word, sign ex]

111 1101 RRR 111 EEEEEE ADDA alu_a_family +Ee ea <- A(RRR) + [ea] [long]

112 1101 RRR 1SS 000rrr ADDX + D(RRR) <- D(RRR) - D(rrr) - X

113 1101 RRR 1SS 001rrr ADDX + [-A(RRR)]<-[A(RRR)]-[-A(rrr)] - X (predec)

114 1110 III 0SS 000RRR ASR

115 1110 III 0SS 001RRR LSR

116 1110 III 0SS 010RRR ROXR

117 1110 III 0SS 011RRR ROR

118 1110 III 1SS 000RRR ASL

119 1110 III 1SS 001RRR LSL

120 1110 III 1SS 010RRR ROXL

121 1110 III 1SS 011RRR ROL

122 1110 RRR 0SS 100rrr ASR Shift by D(RRR)

123 1110 RRR 0SS 101rrr LSR Shift by D(RRR)

124 1110 RRR 0SS 110rrr ROXR Rotate by D(RRR)

125 1110 RRR 0SS 111rrr ROR Rotate by D(RRR)

126 1110 RRR 1SS 100rrr ASL Shift by D(RRR)

127 1110 RRR 1SS 101rrr LSL Shift by D(RRR)

128 1110 RRR 1SS 110rrr ROXL Rotate by D(RRR)

129 1110 RRR 1SS 111rrr ROL Rotate by D(RRR)

130

131 1110 000 011 EEEEEE ASR adip Ee Shift memory

132 1110 001 011 EEEEEE LSR adip Ee Shift memory

133 1110 010 011 EEEEEE ROXR adip Ee Rotate memory

134 1110 011 011 EEEEEE ROR adip Ee Rotate memory

135 1110 000 111 EEEEEE ASL adip Ee Shift memory

136 1110 001 111 EEEEEE LSL adip Ee Shift memory

137 1110 010 111 EEEEEE ROXL adip Ee Rotate memory

138 1110 011 111 EEEEEE ROL adip Ee Rotate memory

139 1110 1XX X11 EEEEEE BF aimp Ee 68020 ext BF* not totally correct EA.

140

141 1111 XXX XXX XXXXXX cp Unsupported Coprocessor Instruction

142

I. State Machine Sequences

I.1. Source code of alu a family.sm
1 LABEL alu_a_family

2

3 if instruction_register (8) = ’1’

4 then

5 operation_size_control <= SET_TO_DWORD ;

6 else

147

7 operation_size_control <= SET_TO_WORD ;

8 end if ;

9

10 CLOCK

11

12 -- ADDA or SUBA

13

14 -- always ARF(B) <- ARF(B) <op> EA

15 -- Note: ALU_A_FAMILY uses reverse subtraction, so the

16 -- reversal of the operands is ok.

17

18 case ea_mode is

19 when "000" =>

20 -- ARF(B) <- ARF(B) <op> DRF(A)

21 alu_mode <= ALU_A_FAMILY ;

22 alu_source_a <= ALU_A_DATA_X ;

23 alu_source_b <= ALU_B_ADDRESS_Y ;

24 reg_update_address_x <= ’1’ ;

25 alu_reverse_operands <= ’1’ ;

26 register_file_source_x <= RF_X_11_TO_9_FIELD ;

27 RETURN

28 when "001" =>

29 -- ARF(B) <- ARF(B) <op> ARF(A)

30 alu_mode <= ALU_A_FAMILY ;

31 alu_source_a <= ALU_A_ADDRESS_X ;

32 alu_source_b <= ALU_B_ADDRESS_Y ;

33 alu_reverse_operands <= ’1’ ;

34 reg_update_address_x <= ’1’ ;

35 register_file_source_x <= RF_X_11_TO_9_FIELD ;

36 RETURN

37 when others =>

38 -- ARF(B) <- ARF(B) <op> EA

39 CALL decode_ea_and_dereference

40 end case ;

41

42 -- And now, do the work.

43 CLOCK

44

45 -- If we have reached here, EA must be a memory address.

46 -- Do the computation and store in ARF(B)

47

48 alu_mode <= ALU_A_FAMILY ;

49 alu_source_a <= ALU_A_OPERAND_VALUE ;

50 alu_source_b <= ALU_B_ADDRESS_Y ;

51 alu_reverse_operands <= ’1’ ;

52 register_file_source_x <= RF_X_11_TO_9_FIELD ;

53 reg_update_address_x <= ’1’ ;

54 RETURN

55 CLOCK

56

I.2. Source code of alu a family cmp.sm
1 LABEL alu_a_cmp

2

3 if instruction_register (8) = ’1’

4 then

5 operation_size_control <= SET_TO_DWORD ;

6 else

7 operation_size_control <= SET_TO_WORD ;

8 end if ;

9

10 CLOCK

11

12 -- CMPA

13

14 -- always do ARF(B) <op> EA

15 -- Note: ALU_A_FAMILY uses reverse subtraction, so the

16 -- reversal of the operands is ok.

17

18 case ea_mode is

19 when "000" =>

20 -- ARF(B) <op> DRF(A)

148

21 alu_mode <= ALU_A_FAMILY ;

22 alu_source_a <= ALU_A_DATA_X ;

23 alu_source_b <= ALU_B_ADDRESS_Y ;

24 alu_reverse_operands <= ’1’ ;

25 RETURN

26 when "001" =>

27 -- ARF(B) <op> ARF(A)

28 alu_mode <= ALU_A_FAMILY ;

29 alu_source_a <= ALU_A_ADDRESS_X ;

30 alu_source_b <= ALU_B_ADDRESS_Y ;

31 alu_reverse_operands <= ’1’ ;

32 RETURN

33 when others =>

34 -- ARF(B) <op> EA

35 CALL decode_ea_and_dereference

36 end case ;

37

38 CLOCK

39

40 -- If we have reached here, EA must be a memory address.

41 -- Do the computation.

42

43 alu_mode <= ALU_A_FAMILY ;

44 alu_source_a <= ALU_A_OPERAND_VALUE ;

45 alu_source_b <= ALU_B_ADDRESS_Y ;

46 alu_reverse_operands <= ’1’ ;

47 RETURN

48 CLOCK

49

I.3. Source code of alu i cmp.sm
1 LABEL alu_i_cmp

2

3 -- For the CMPI instruction

4

5 operation_size_control <= SET_TO_IR ;

6

7 CALL fetch_immediate_data

8 CLOCK

9

10 -- This operation is:

11 -- EA - <immediate>

12 -- The immediate value precedes the effective address.

13

14 case ea_mode is

15 when "000" =>

16 -- DRF(A) <op> IDR

17 alu_mode <= ALU_I_FAMILY ;

18 alu_source_a <= ALU_A_DATA_X ;

19 alu_source_b <= ALU_B_IDR ;

20 RETURN

21 -- when "001" => -- not allowed!

22 when others =>

23 -- EA <- EA <op> IDR

24 CALL decode_ea_and_dereference

25 end case ;

26

27 -- And now, do the work.

28 CLOCK

29

30 -- If we have reached here, EA must be a memory address.

31 -- Do the computation..

32

33 alu_mode <= ALU_I_FAMILY ;

34 alu_source_a <= ALU_A_OPERAND_VALUE ;

35 alu_source_b <= ALU_B_IDR ;

36 RETURN

37 CLOCK

38

149

I.4. Source code of alu i family.sm
1 LABEL alu_i_family

2

3 operation_size_control <= SET_TO_IR ;

4

5 -- ADDI, ANDI, EORI, ORI, SUBI

6 -- but not CMPI

7

8 CALL fetch_immediate_data

9 CLOCK

10

11 -- This operation is:

12 -- EA <- EA - <immediate>

13 -- The immediate value precedes the effective address.

14

15 case ea_mode is

16 when "000" =>

17 -- DRF(A) <- DRF(A) <op> IDR

18 alu_mode <= ALU_I_FAMILY ;

19 alu_source_a <= ALU_A_DATA_X ;

20 alu_source_b <= ALU_B_IDR ;

21 reg_update_data_x <= ’1’ ;

22 RETURN

23 -- when "001" => -- not allowed!

24 when others =>

25 -- EA <- EA <op> IDR

26 CALL decode_ea_and_dereference

27 end case ;

28

29 -- And now, do the work.

30 CLOCK

31

32 -- If we have reached here, EA must be a memory address.

33 -- Do the computation..

34

35 alu_mode <= ALU_I_FAMILY ;

36 alu_source_a <= ALU_A_OPERAND_VALUE ;

37 alu_source_b <= ALU_B_IDR ;

38 operand_value_source <= ALU_TO_OV ;

39 JUMP store_operand_value

40 CLOCK

41

I.5. Source code of alu no cmp.sm
1 LABEL alu_no_cmp

2

3 operation_size_control <= SET_TO_IR ;

4

5 -- CMP instruction

6

7 -- Operation is DRF(B) <op> EA

8

9 case ea_mode is

10 when "000" =>

11 -- DRF(B) <op> DRF(A)

12 alu_mode <= ALU_NO_FAMILY ;

13 alu_source_a <= ALU_A_DATA_X ;

14 alu_source_b <= ALU_B_DATA_Y ;

15 alu_reverse_operands <= ’1’ ;

16 RETURN

17 when "001" =>

18 -- DRF(B) <op> ARF(A)

19 alu_mode <= ALU_NO_FAMILY ;

20 alu_source_a <= ALU_A_ADDRESS_X ;

21 alu_source_b <= ALU_B_DATA_Y ;

22 alu_reverse_operands <= ’1’ ;

23 RETURN

24 when others => -- DRF(B) <op> EA

25 CALL decode_ea_and_dereference

26 end case ;

27

150

28 -- And now, do the work.

29 CLOCK

30

31 -- If we have reached here, EA must be a memory address.

32 -- Do the computation.

33

34 -- DRF(B) <op> EA

35 alu_mode <= ALU_NO_FAMILY ;

36 alu_source_a <= ALU_A_OPERAND_VALUE ;

37 alu_source_b <= ALU_B_DATA_Y ;

38 alu_reverse_operands <= ’1’ ;

39 RETURN

40 CLOCK

41

I.6. Source code of alu no family.sm
1 LABEL alu_no_family

2

3 operation_size_control <= SET_TO_IR ;

4

5 -- One of ADD, SUB, OR, EOR, AND

6 -- but not CMP

7

8 -- The operation may be in either direction:

9 -- If IR(8) = 0, then operation is DRF(B) <- DRF(B) <op> EA

10 -- If IR(8) = 1, then operation is EA <- EA <op> DRF(B)

11 -- The EA mode is never Register Direct if IR(8) = 1.

12

13 case ea_mode is

14 when "000" =>

15 -- IR(8) = 0 DRF(B) <- DRF(B) <op> DRF(A)

16 -- Set A=B so as to program DRF(B)..

17 register_file_source_x <= RF_X_11_TO_9_FIELD ;

18 alu_mode <= ALU_NO_FAMILY ;

19 alu_source_a <= ALU_A_DATA_X ;

20 alu_source_b <= ALU_B_DATA_Y ;

21 alu_reverse_operands <= ’1’ ;

22 reg_update_data_x <= ’1’ ;

23 RETURN

24 when "001" =>

25 -- IR(8) = 0 DRF(B) <- DRF(B) <op> ARF(A)

26 -- Set A=B so as to program DRF(B)..

27 register_file_source_x <= RF_X_11_TO_9_FIELD ;

28 alu_mode <= ALU_NO_FAMILY ;

29 alu_source_a <= ALU_A_ADDRESS_X ;

30 alu_source_b <= ALU_B_DATA_Y ;

31 alu_reverse_operands <= ’1’ ;

32 reg_update_data_x <= ’1’ ;

33 RETURN

34 when others => -- IR(8) = 0 DRF(B) <- DRF(B) <op> EA

35 -- IR(8) = 1 EA <- EA <op> DRF(B)

36 CALL decode_ea_and_dereference

37 end case ;

38

39 -- And now, do the work.

40 CLOCK

41

42 -- If we have reached here, EA must be a memory address.

43 -- Do the computation.

44

45 alu_mode <= ALU_NO_FAMILY ;

46

47 if (instruction_register (8) = ’0’)

48 then

49 -- IR(8) = 0 DRF(B) <- DRF(B) <op> EA

50 -- store in a register, specifically DRF(B).

51 register_file_source_x <= RF_X_11_TO_9_FIELD ;

52 reg_update_data_x <= ’1’ ;

53 alu_source_a <= ALU_A_OPERAND_VALUE ;

54 alu_source_b <= ALU_B_DATA_Y ;

55 alu_reverse_operands <= ’1’ ;

56 RETURN

151

57 else

58 -- IR(8) = 1 EA <- EA <op> DRF(B)

59 -- store in memory. First do the computation.

60 operand_value_source <= ALU_TO_OV ;

61 alu_source_a <= ALU_A_OPERAND_VALUE ;

62 alu_source_b <= ALU_B_DATA_Y ;

63

64 -- Then store the data.

65 JUMP store_operand_value

66 end if ;

67

68 CLOCK

69

I.7. Source code of alu q family.sm
1 LABEL alu_q_family

2

3 operation_size_control <= SET_TO_IR ;

4

5 -- One of ADDQ or SUBQ.

6

7 -- What is the instruction acting upon?

8 case ea_mode is

9 when "000" => -- Acting on a Data register

10 alu_mode <= ALU_Q_FAMILY ;

11 alu_source_a <= ALU_A_DATA_X ;

12 alu_source_b <= ALU_B_PGI ;

13 pgi_source <= PGI_QUICK_IMMEDIATE ;

14

15 -- so the output must go back into the register file.

16 reg_update_data_x <= ’1’ ;

17 RETURN

18 when "001" => -- Acting on an Address register

19 alu_mode <= ALU_Q_FAMILY ;

20 alu_source_a <= ALU_A_ADDRESS_X ;

21 alu_source_b <= ALU_B_PGI ;

22 pgi_source <= PGI_QUICK_IMMEDIATE ;

23

24 -- so the output must go back into the register file.

25 reg_update_address_x <= ’1’ ;

26 RETURN

27 when others => -- Acting on a memory address

28 CALL decode_ea_and_dereference

29 end case ;

30

31 -- Now the ALU control lines are programmed. One clock

32 -- cycle later, and (if the source was a register) the work

33 -- is done. The microsubroutine returns.

34 CLOCK

35

36 -- If the execution reaches this point, we are working on

37 -- a memory location. The EA has been dereferenced, so both

38 -- OA and OV have the right values. Apply the operation to OV

39 -- and store the result in OA.

40

41 alu_mode <= ALU_Q_FAMILY ;

42 alu_source_a <= ALU_A_OPERAND_VALUE ;

43 alu_source_b <= ALU_B_PGI ;

44 pgi_source <= PGI_QUICK_IMMEDIATE ;

45 operand_value_source <= ALU_TO_OV ;

46

47 -- Now store it.

48 JUMP store_operand_value

49 CLOCK

50

I.8. Source code of branch.sm
1 LABEL branch

2

152

3 -- This machine handles BRA and B<cc>

4 -- (branch always, branch on condition code) but doesn’t handle BSR

5 -- (branch to subroutine)

6

7 -- First, fetch extension word/dword if it is present.

8 -- Use fetch_immediate_data

9 -- If the low byte of IR is 0, then there is one extension word

10 -- containing a 16 bit branch offset. If the low byte of IR is 255,

11 -- then there is an extension dword containing a 32 bit branch offset.

12 -- Otherwise there are no extension words.

13 if (instruction_register (7 downto 0) = "0000000")

14 then

15 -- There is one extension word.

16 -- We also set a flag so that after the fetch, PC will be

17 -- restored to the value it has at present.

18 -- The immediate value precedes the effective address.

19

20 restore_pc_after_immediate_fetch_set <= ’1’ ;

21 operation_size_control <= SET_TO_WORD ;

22 CALL fetch_immediate_data

23 elsif (instruction_register (7 downto 0) = "11111111")

24 then

25 -- There’s a long extension word.

26 -- We also set a flag so that after the fetch, PC will be

27 -- restored to the value it has at present.

28

29 restore_pc_after_immediate_fetch_set <= ’1’ ;

30 operation_size_control <= SET_TO_DWORD ;

31 CALL fetch_immediate_data

32 else

33 -- No extension words. We can branch now if condition_true = ’1’.

34 if (condition_true = ’1’)

35 then

36 alu_mode <= ALU_ADD ;

37 alu_source_a <= ALU_A_PC ;

38 alu_source_b <= ALU_B_LOW_BYTE_OF_IR ;

39 pc_source <= ALU_TO_PC ;

40 end if ;

41 RETURN

42 end if ;

43 CLOCK

44

45 -- There were one or two extension words.

46 if (condition_true = ’1’)

47 then

48 alu_mode <= ALU_ADD ;

49 alu_source_a <= ALU_A_PC ;

50 alu_source_b <= ALU_B_IDR ;

51 pc_source <= ALU_TO_PC ;

52 else

53 -- Jump over extension words.

54 alu_mode <= ALU_ADD ;

55 alu_source_a <= ALU_A_PC ;

56 pc_source <= ALU_TO_PC ;

57 if (instruction_register (7 downto 0) = "00000000")

58 then

59 -- 1 word

60 alu_source_b <= ALU_B_PGI ;

61 pgi_source <= PGI_TWO ;

62 else

63 -- 1 dword

64 alu_source_b <= ALU_B_PGI ;

65 pgi_source <= PGI_FOUR ;

66 end if ;

67 end if ;

68

69 RETURN

70 CLOCK

71

I.9. Source code of clr.sm
1 LABEL clr

153

2

3 -- CLR: write zero to an effective address

4

5 operation_size_control <= SET_TO_IR ;

6

7 case ea_mode is

8 when "000" =>

9 -- DRF(A) <- 0

10 alu_mode <= ALU_CLR_FAMILY ;

11 alu_source_a <= ALU_A_PGI ;

12 alu_source_b <= ALU_B_PGI ;

13 pgi_source <= PGI_ZERO ;

14 reg_update_data_x <= ’1’ ;

15 RETURN

16 when "001" =>

17 -- ARF(A) <- 0

18 alu_mode <= ALU_CLR_FAMILY ;

19 alu_source_a <= ALU_A_PGI ;

20 alu_source_b <= ALU_B_PGI ;

21 pgi_source <= PGI_ZERO ;

22 reg_update_address_x <= ’1’ ;

23 RETURN

24 when others => -- EA <- 0 -- No need to dereference EA.

25 CALL decode_ea

26 end case ;

27

28 CLOCK

29

30 alu_mode <= ALU_CLR_FAMILY ;

31 alu_source_a <= ALU_A_PGI ;

32 alu_source_b <= ALU_B_PGI ;

33 pgi_source <= PGI_ZERO ;

34 operand_value_source <= ALU_TO_OV ;

35 JUMP store_operand_value

36

37 CLOCK

38

I.10. Source code of decbranch.sm
1 LABEL decbranch

2

3 -- This machine is for DB<cc>

4 -- (decrement and branch on condition)

5

6 -- If condition is true, then do nothing.

7 -- (Although we must still skip the extension word containing

8 -- the displacement)

9

10 operation_size_control <= SET_TO_WORD ;

11 restore_pc_after_immediate_fetch_set <= ’1’ ;

12 alu_mode <= ALU_ADD ;

13 alu_source_a <= ALU_A_PC ;

14 alu_source_b <= ALU_B_PGI ;

15 pgi_source <= PGI_TWO ;

16

17 if (condition_true = ’1’)

18 then

19 -- Jump over extension word.

20 pc_source <= ALU_TO_PC ;

21 RETURN

22 else

23 -- Fetch the displacement

24 CALL fetch_immediate_data

25 end if ;

26 CLOCK

27

28 -- Do the following things

29 -- Dn <- Dn - 1 (decrement Dn)

30 -- If Dn /= -1, then PC <- PC + d

31

32 -- This should be a word mode operation. Should it affect CC’s?

33 alu_mode <= ALU_SUBTRACT ;

154

34 alu_source_a <= ALU_A_DATA_X ;

35 alu_source_b <= ALU_B_PGI ;

36 pgi_source <= PGI_ONE ;

37 reg_update_data_x <= ’1’ ;

38

39 CLOCK

40 -- is Dn == -1?

41

42 alu_mode <= ALU_ADD ;

43 alu_source_a <= ALU_A_DATA_X ;

44 alu_source_b <= ALU_B_PGI ;

45 pgi_source <= PGI_ZERO ;

46

47 if (alu_output_is_minus_one = ’1’)

48 then

49 -- Stop looping if the data register is exactly -1.

50 JUMP dbcc_stop_looping

51 end if ;

52

53 CLOCK

54

55 -- dbcc_continue_looping

56

57 -- PC <- PC + d

58 alu_mode <= ALU_ADD ;

59 alu_source_a <= ALU_A_PC ;

60 alu_source_b <= ALU_B_IDR ;

61 pc_source <= ALU_TO_PC ;

62 RETURN

63 CLOCK

64

65 LABEL dbcc_stop_looping

66 -- Jump over the extension word.

67 alu_mode <= ALU_ADD ;

68 alu_source_a <= ALU_A_PC ;

69 alu_source_b <= ALU_B_PGI ;

70 pgi_source <= PGI_TWO ;

71 pc_source <= ALU_TO_PC ;

72 RETURN

73 CLOCK

74

I.11. Source code of decode ea.sm
1 LABEL decode_ea

2

3 -- Decode an effective address field in an instruction, storing the

4 -- effective address itself in the OPERAND_ADDRESS register.

5 -- Prereqs:

6 -- The instruction must have an effective address field.

7 -- The effective address mode is not 0 or 1.

8 -- i.e. the mode is not register direct.

9 -- Postconditions:

10 -- EA loaded into operand_address.

11

12 -- Check mode field. This is normally instruction_register (5 downto 3)

13 -- but not always (see the MOVE instruction).

14 case apply_ea_mode (ea_mode) (2 downto 0) is

15

16 when "010" =>

17 -- Address Register Indirect mode:

18 -- OA <- AR (ea_reg)

19

20 -- since, by default, register_file_source_x = RF_X_EA_REG,

21 -- the address register chosen by ea_reg will already be on

22 -- the output of the register file.

23

24 alu_mode <= ALU_ADD ;

25 alu_source_a <= ALU_A_ADDRESS_X ;

26 alu_source_b <= ALU_B_PGI ;

27 pgi_source <= PGI_ZERO ;

28 operand_address_source <= ALU_TO_OA ;

29 RETURN

155

30

31 when "011" =>

32 -- Address Register Indirect (with Postinc)

33 -- [1] OA <- AR (ea_reg)

34 -- [2] AR (ea_reg) <- AR (ea_reg) + size

35

36 -- We do the first stage now.

37 alu_mode <= ALU_ADD ;

38 alu_source_a <= ALU_A_ADDRESS_X ;

39 alu_source_b <= ALU_B_PGI ;

40 pgi_source <= PGI_ZERO ;

41 operand_address_source <= ALU_TO_OA ;

42

43 -- and then do the second part in a helper state

44 JUMP decode_ea_postinc_helper

45

46 when "100" =>

47 -- Address Register Indirect (with Predec)

48 -- [1] AR (ea_reg) <- AR (ea_reg) - size

49 -- [2] OA <- AR (ea_reg)

50

51 -- First, do the subtraction

52 alu_mode <= ALU_SUBTRACT ;

53 alu_source_a <= ALU_A_ADDRESS_X ;

54 alu_source_b <= ALU_B_PGI ;

55 pgi_source <= PGI_POSTINC_PREDEC ;

56 reg_update_address_x <= ’1’ ;

57 reg_update_override_size <= ’1’ ;

58

59 -- Do the second part in a helper state

60 JUMP decode_ea_predec_helper

61

62 when "101" =>

63 -- Address Register Indirect with Displacement

64 -- The first extension word must be fetched. It goes into OA.

65 CALL fetch_extension_word

66

67 when "110" =>

68 -- This mode isn’t supported.

69 CALL fault

70

71 when "111" =>

72 -- Check register field.

73 case apply_ea_reg (ea_reg) (2 downto 0) is

74 when "000" => -- Absolute address (Word mode)

75 JUMP fetch_extension_word

76 when "001" => -- Absolute address (Dword mode)

77 JUMP fetch_extension_dword

78 when "010"|"011" =>

79 -- PC relative w/ Displacement

80 -- PC memory indirect w/ index

81 -- The extension word must be fetched into OA

82 CALL fetch_extension_word

83 when others => -- Immediate

84 -- For word or long immediates, we copy OA <- PC.

85 -- For byte immediates, use OA <- PC+1 to get the

86 -- correct address of the data.

87 alu_mode <= ALU_ADD ;

88 alu_source_a <= ALU_A_PC ;

89 if (operation_size = BYTE)

90 then

91 alu_source_b <= ALU_B_PGI ;

92 pgi_source <= PGI_ONE ;

93 else

94 alu_source_b <= ALU_B_PGI ;

95 pgi_source <= PGI_ZERO ;

96 end if ;

97 operand_address_source <= ALU_TO_OA ;

98 end case ;

99 when others =>

100 CALL fault

101 end case ;

102 CLOCK

103

156

104 -- By this point, many of the addressing modes will have caused

105 -- the decode_ea subroutine to return. The ones requiring some

106 -- extension word, however, will now have fetched that word.

107 -- Here we deal with it.

108 case apply_ea_mode (ea_mode) (2 downto 0) is

109 when "101" =>

110 -- Address Register Indirect with Displacement

111 -- The displacement is already in OA.

112 -- OA <- AR (ea_reg) + OA.

113

114 alu_mode <= ALU_ADD ;

115 alu_source_a <= ALU_A_ADDRESS_X ;

116 alu_source_b <= ALU_B_OA ;

117 operand_address_source <= ALU_TO_OA ;

118 RETURN

119 -- when "110" => TBD.

120 when "111" =>

121 -- Check register field.

122 case apply_ea_reg (ea_reg) (2 downto 0) is

123 when "010" =>

124 -- PC relative w/ Displacement

125 -- The displacement is already in OA.

126

127 -- OA <- PC + OA

128 alu_mode <= ALU_ADD ;

129 alu_source_a <= ALU_A_PC ;

130 alu_source_b <= ALU_B_OA ;

131 operand_address_source <= ALU_TO_OA ;

132

133 -- Unforunately, the value loaded into OA is actually

134 -- the address plus 2, since the PC relative address

135 -- is relative to the end of the opcode not the end of

136 -- the instruction word! Correct for this.

137 JUMP correct_pc_relative

138 -- when "011" => TBD

139 when others => -- Immediate

140 -- If the effective address is an immediate, the PC will need

141 -- incrementing over the immediate so that it isn’t executed

142 -- as code.

143

144 if (ea_move_destination_control = ’0’)

145 then

146 case operation_size is

147 when BYTE|WORD =>

148 -- Add two to the PC. PC <- PC + 2

149 pgi_source <= PGI_TWO ;

150 when others => -- DWORD

151 -- Add four to the PC. PC <- PC + 4

152 pgi_source <= PGI_FOUR ;

153 end case ;

154 alu_mode <= ALU_ADD ;

155 alu_source_a <= ALU_A_PC ;

156 alu_source_b <= ALU_B_PGI ;

157 pc_source <= ALU_TO_PC ;

158

159 RETURN

160 else

161 CALL fault

162 end if ;

163 end case ;

164 when others =>

165 CALL fault

166 end case ;

167 CLOCK

168

169 -- decode_ea helper functions. These simplify the state machine

170 -- somewhat.

171 LABEL decode_ea_postinc_helper

172 alu_mode <= ALU_ADD ;

173 alu_source_a <= ALU_A_ADDRESS_X ;

174 alu_source_b <= ALU_B_PGI ;

175 pgi_source <= PGI_POSTINC_PREDEC ;

176 reg_update_address_x <= ’1’ ;

177 reg_update_override_size <= ’1’ ;

157

178 RETURN

179 CLOCK

180

181 LABEL decode_ea_predec_helper

182 alu_mode <= ALU_ADD ;

183 alu_source_a <= ALU_A_ADDRESS_X ;

184 alu_source_b <= ALU_B_PGI ;

185 pgi_source <= PGI_ZERO ;

186 operand_address_source <= ALU_TO_OA ;

187 RETURN

188 CLOCK

189

190 LABEL correct_pc_relative

191 -- OA <- OA - 2

192

193 alu_mode <= ALU_SUBTRACT ;

194 alu_source_a <= ALU_A_PGI ;

195 alu_source_b <= ALU_B_OA ;

196 alu_reverse_operands <= ’1’ ;

197 pgi_source <= PGI_TWO ;

198 operand_address_source <= ALU_TO_OA ;

199 RETURN

200 CLOCK

201

I.12. Source code of decode ea and dereference.sm
1 LABEL decode_ea_and_dereference

2

3 -- Decode an effective address and load data at it.

4 -- Prereqs:

5 -- operation_size must be set correctly.

6 -- Postconditions:

7 -- EA loaded into operand_address.

8 -- operand_value <- [operand_address]

9 case ea_mode is

10 when "000" => -- Source is a Data register

11 alu_mode <= ALU_ADD ;

12 alu_source_a <= ALU_A_DATA_X ;

13 alu_source_b <= ALU_B_PGI ;

14 pgi_source <= PGI_ZERO ;

15 operand_value_source <= ALU_TO_OV ;

16 RETURN

17 when "001" => -- Source is an Address register

18 alu_mode <= ALU_ADD ;

19 alu_source_a <= ALU_A_ADDRESS_X ;

20 alu_source_b <= ALU_B_PGI ;

21 pgi_source <= PGI_ZERO ;

22 operand_value_source <= ALU_TO_OV ;

23 RETURN

24 when others => -- Acting on a memory address

25 CALL decode_ea

26 end case ;

27 CLOCK

28

29 LABEL load_operand_value

30 -- OV <- [OA]

31

32 -- Prepare to fetch 1st byte of operand value.

33 mar_source <= OA_TO_MAR ;

34

35 -- Increment OA to obtain the 2nd byte address

36 alu_mode <= ALU_ADD ;

37 alu_source_a <= ALU_A_PGI ;

38 alu_source_b <= ALU_B_OA ;

39 pgi_source <= PGI_ONE ;

40 operand_address_source <= ALU_TO_OA ;

41 CLOCK

42

43 -- Store the byte that was fetched.

44 case operation_size is

45 when BYTE =>

46 operand_value_source <= MDR_TO_OV_0 ;

158

47 when WORD =>

48 operand_value_source <= MDR_TO_OV_1 ;

49 when others => -- DWORD

50 operand_value_source <= MDR_TO_OV_3 ;

51 end case ;

52

53 -- Prepare to fetch the 2nd byte

54 mar_source <= OA_TO_MAR ;

55

56 if (operation_size = BYTE)

57 then

58 -- Decrement OA to restore original value

59 alu_mode <= ALU_SUBTRACT ;

60

61 RETURN

62 else

63 -- Increment OA to get the 3rd byte address

64 alu_mode <= ALU_ADD ;

65 end if ;

66

67 alu_reverse_operands <= ’1’ ;

68 alu_source_a <= ALU_A_PGI ;

69 alu_source_b <= ALU_B_OA ;

70 pgi_source <= PGI_ONE ;

71 operand_address_source <= ALU_TO_OA ;

72 CLOCK

73

74 -- Store the byte that was fetched.

75 case operation_size is

76 when WORD =>

77 operand_value_source <= MDR_TO_OV_0 ;

78 when others => -- DWORD

79 operand_value_source <= MDR_TO_OV_2 ;

80 end case ;

81

82 -- Prepare to fetch the 3rd byte

83 mar_source <= OA_TO_MAR ;

84

85 if (operation_size = WORD)

86 then

87 -- Decrement OA by 2 to restore the original value

88 pgi_source <= PGI_TWO ;

89 alu_mode <= ALU_SUBTRACT ;

90

91 RETURN

92 else

93 -- Increment OA to get the 4th byte address

94 pgi_source <= PGI_ONE ;

95 alu_mode <= ALU_ADD ;

96 end if ;

97 alu_reverse_operands <= ’1’ ;

98 alu_source_a <= ALU_A_PGI ;

99 alu_source_b <= ALU_B_OA ;

100 operand_address_source <= ALU_TO_OA ;

101 CLOCK

102

103 -- Store the byte that was fetched.

104 operand_value_source <= MDR_TO_OV_1 ;

105

106 -- Prepare the fetch the 4th byte

107 mar_source <= OA_TO_MAR ;

108

109 -- Decrement OA to restore the original value.

110 pgi_source <= PGI_THREE ;

111 alu_mode <= ALU_SUBTRACT ;

112 alu_reverse_operands <= ’1’ ;

113 alu_source_a <= ALU_A_PGI ;

114 alu_source_b <= ALU_B_OA ;

115 operand_address_source <= ALU_TO_OA ;

116

117 CLOCK

118 -- Store the byte that was fetched.

119 operand_value_source <= MDR_TO_OV_0 ;

120

159

121 RETURN

122 CLOCK

123

I.13. Source code of decode ea and store.sm
1 LABEL decode_ea_and_store

2

3 -- Decode an effective address and store data at it.

4 -- Prereqs:

5 -- operation_size must be set correctly.

6 -- The instruction must have an effective address field.

7 -- Postconditions:

8 -- EA loaded into operand_address.

9 -- operand_value stored at operand_address, with data size

10 -- operation_size.

11 case ea_mode is

12 when "000" => -- Data register direct

13 alu_mode <= ALU_ADD ;

14 alu_source_a <= ALU_A_OPERAND_VALUE ;

15 alu_source_b <= ALU_B_PGI ;

16 pgi_source <= PGI_ZERO ;

17 reg_update_data_x <= ’1’ ;

18 RETURN

19

20 when "001" => -- Address register direct

21 alu_mode <= ALU_ADD ;

22 alu_source_a <= ALU_A_OPERAND_VALUE ;

23 alu_source_b <= ALU_B_PGI ;

24 pgi_source <= PGI_ZERO ;

25 reg_update_address_x <= ’1’ ;

26 RETURN

27

28 when others => -- Operating on a memory address.

29 CALL decode_ea

30 end case ;

31 CLOCK

32

33 -- Store OV at OA.

34 -- Prereqs:

35 -- OA, OV programmed.

36 -- operation_size must be set correctly.

37 -- Postconditions:

38 -- OA <- OV

39 LABEL store_operand_value

40 -- You can’t do an immediate store. Don’t even bother

41 -- to check for this. (If you could we might need to increment PC here)

42

43 -- Memory[OA] <- OV

44

45 mar_source <= OA_TO_MAR ;

46 case operation_size is

47 when BYTE =>

48 -- There is only one byte to store

49 mdr_source <= OV_0_TO_MDR ;

50 RETURN

51 when WORD =>

52 -- Store the high byte of the word

53 mdr_source <= OV_1_TO_MDR ;

54 alu_mode <= ALU_ADD ;

55 alu_source_a <= ALU_A_PGI ;

56 alu_source_b <= ALU_B_OA ;

57 pgi_source <= PGI_ONE ;

58 operand_address_source <= ALU_TO_OA ;

59 when others => --DWORD

60 -- Store the high byte of the dword

61 mdr_source <= OV_3_TO_MDR ;

62 alu_mode <= ALU_ADD ;

63 alu_source_a <= ALU_A_PGI ;

64 alu_source_b <= ALU_B_OA ;

65 pgi_source <= PGI_ONE ;

66 operand_address_source <= ALU_TO_OA ;

67 end case ;

160

68

69 CLOCK

70

71 mar_source <= OA_TO_MAR ;

72 case operation_size is

73 when WORD =>

74 -- Store the low byte of the word

75 mdr_source <= OV_0_TO_MDR ;

76 -- Subtract 1 from OA so that the original value

77 -- is restored.

78 alu_mode <= ALU_SUBTRACT ;

79 alu_source_a <= ALU_A_PGI ;

80 alu_source_b <= ALU_B_OA ;

81 alu_reverse_operands <= ’1’ ;

82 pgi_source <= PGI_ONE ;

83 operand_address_source <= ALU_TO_OA ;

84 RETURN

85 when others => --DWORD

86 -- Store the next byte of the dword (2)

87 mdr_source <= OV_2_TO_MDR ;

88 alu_mode <= ALU_ADD ;

89 alu_source_a <= ALU_A_PGI ;

90 alu_source_b <= ALU_B_OA ;

91 pgi_source <= PGI_ONE ;

92 operand_address_source <= ALU_TO_OA ;

93 end case ;

94

95 CLOCK

96

97 -- Store the next byte of the dword (1)

98 mar_source <= OA_TO_MAR ;

99 mdr_source <= OV_1_TO_MDR ;

100 alu_mode <= ALU_ADD ;

101 alu_source_a <= ALU_A_PGI ;

102 alu_source_b <= ALU_B_OA ;

103 pgi_source <= PGI_ONE ;

104 operand_address_source <= ALU_TO_OA ;

105

106 CLOCK

107

108 -- Store the low byte of the dword (0)

109 mar_source <= OA_TO_MAR ;

110 mdr_source <= OV_0_TO_MDR ;

111 -- Subtract 3 from OA so that the original value

112 -- is restored.

113 alu_mode <= ALU_SUBTRACT ;

114 alu_source_a <= ALU_A_PGI ;

115 alu_source_b <= ALU_B_OA ;

116 alu_reverse_operands <= ’1’ ;

117 pgi_source <= PGI_THREE ;

118 operand_address_source <= ALU_TO_OA ;

119

120 RETURN

121 CLOCK

122

I.14. Source code of fetch extension dword.sm
1 LABEL fetch_extension_dword

2

3 -- This loads OA <- [PC]. 32 bits are loaded.

4 -- PC <- PC + 4 is also done.

5

6 mar_source <= PC_TO_MAR ;

7 alu_mode <= ALU_ADD ;

8 alu_source_a <= ALU_A_PC ;

9 alu_source_b <= ALU_B_PGI ;

10 pgi_source <= PGI_ONE ;

11 pc_source <= ALU_TO_PC ;

12 CLOCK

13

14 operand_address_source <= MDR_TO_OA_3 ;

15

161

16 mar_source <= PC_TO_MAR ;

17 alu_mode <= ALU_ADD ;

18 alu_source_a <= ALU_A_PC ;

19 alu_source_b <= ALU_B_PGI ;

20 pgi_source <= PGI_ONE ;

21 pc_source <= ALU_TO_PC ;

22 CLOCK

23

24 operand_address_source <= MDR_TO_OA_2 ;

25

26 mar_source <= PC_TO_MAR ;

27 alu_mode <= ALU_ADD ;

28 alu_source_a <= ALU_A_PC ;

29 alu_source_b <= ALU_B_PGI ;

30 pgi_source <= PGI_ONE ;

31 pc_source <= ALU_TO_PC ;

32 CLOCK

33

34 operand_address_source <= MDR_TO_OA_1 ;

35

36 mar_source <= PC_TO_MAR ;

37 alu_mode <= ALU_ADD ;

38 alu_source_a <= ALU_A_PC ;

39 alu_source_b <= ALU_B_PGI ;

40 pgi_source <= PGI_ONE ;

41 pc_source <= ALU_TO_PC ;

42

43 CLOCK

44

45 operand_address_source <= MDR_TO_OA_0 ;

46

47 RETURN

48 CLOCK

49

I.15. Source code of fetch extension word.sm
1 LABEL fetch_extension_word

2

3 -- This loads OA <- [PC]. 16 bits are loaded. The

4 -- top 16 bits of OA are sign extended.

5 -- PC <- PC + 2 is also done.

6

7 mar_source <= PC_TO_MAR ;

8 alu_mode <= ALU_ADD ;

9 alu_source_a <= ALU_A_PC ;

10 alu_source_b <= ALU_B_PGI ;

11 pgi_source <= PGI_ONE ;

12 pc_source <= ALU_TO_PC ;

13 CLOCK

14

15 operand_address_source <= MDR_TO_OA_1_SE ;

16

17 mar_source <= PC_TO_MAR ;

18 alu_mode <= ALU_ADD ;

19 alu_source_a <= ALU_A_PC ;

20 alu_source_b <= ALU_B_PGI ;

21 pgi_source <= PGI_ONE ;

22 pc_source <= ALU_TO_PC ;

23

24 CLOCK

25

26 operand_address_source <= MDR_TO_OA_0 ;

27

28 RETURN

29 CLOCK

30

I.16. Source code of fetch immediate data.sm
1 LABEL fetch_immediate_data

162

2

3 -- This loads IDR <- [PC], with size according to operation_size.

4 -- The value in IDR is sign-extended to 32 bits. This means that short

5 -- immediates can be added directly to PC or OA.

6

7 -- PC is advanced appropriately: by 2 for BYTE/WORD immediates

8 -- and by 4 for DWORD immediates

9

10 -- Prepare to fetch 1st byte

11 mar_source <= PC_TO_MAR ;

12

13 -- Set PC for fetch of 2nd byte

14 alu_mode <= ALU_ADD ;

15 alu_source_a <= ALU_A_PC ;

16 alu_source_b <= ALU_B_PGI ;

17 pgi_source <= PGI_ONE ;

18 pc_source <= ALU_TO_PC ;

19 CLOCK

20

21 -- Store 1st byte

22 if (operation_size = BYTE)

23 or (operation_size = WORD)

24 then

25 -- When the most significant byte of the word is

26 -- loaded, sign extend it to fill the remaining 16 bits of IDR.

27 immediate_data_source <= MDR_TO_IDR_1_SE ;

28 else

29 immediate_data_source <= MDR_TO_IDR_3 ;

30 end if ;

31

32 -- Prepare to fetch 2nd byte

33 mar_source <= PC_TO_MAR ;

34

35 -- Set PC for fetch of 3rd byte

36 alu_mode <= ALU_ADD ;

37 alu_source_a <= ALU_A_PC ;

38 alu_source_b <= ALU_B_PGI ;

39 pgi_source <= PGI_ONE ;

40 pc_source <= ALU_TO_PC ;

41 CLOCK

42

43 -- Store 2nd byte

44 if (operation_size = BYTE)

45 or (operation_size = WORD)

46 then

47 if (operation_size = BYTE)

48 then

49 -- Bytes are sign extended to fill the rest of IDR.

50 immediate_data_source <= MDR_TO_IDR_0_SE ;

51 else

52 immediate_data_source <= MDR_TO_IDR_0 ;

53 end if ;

54

55 -- We may need to put the PC value back to the 1st

56 -- byte.

57

58 if (restore_pc_after_immediate_fetch = ’1’)

59 then

60 -- Do PC <- PC - 2 so that PC returns to the

61 -- value it had when this subroutine was entered

62 alu_source_a <= ALU_A_PC ;

63 alu_source_b <= ALU_B_PGI ;

64 pgi_source <= PGI_TWO ;

65 alu_mode <= ALU_SUBTRACT ;

66 pc_source <= ALU_TO_PC ;

67 end if ;

68

69 RETURN

70 else

71 immediate_data_source <= MDR_TO_IDR_2 ;

72

73 -- Prepare to fetch 3rd byte

74 mar_source <= PC_TO_MAR ;

75

163

76 -- Set PC for fetch of 4th byte

77 alu_mode <= ALU_ADD ;

78 alu_source_a <= ALU_A_PC ;

79 alu_source_b <= ALU_B_PGI ;

80 pgi_source <= PGI_ONE ;

81 pc_source <= ALU_TO_PC ;

82 end if ;

83

84 CLOCK

85

86 -- Store 3rd byte

87 immediate_data_source <= MDR_TO_IDR_1 ;

88

89 -- Prepare to fetch 4th byte

90 mar_source <= PC_TO_MAR ;

91

92 if (restore_pc_after_immediate_fetch = ’1’)

93 then

94 -- Set PC back to 1st byte

95 alu_mode <= ALU_SUBTRACT ;

96 alu_source_a <= ALU_A_PC ;

97 alu_source_b <= ALU_B_PGI ;

98 pgi_source <= PGI_THREE ;

99 pc_source <= ALU_TO_PC ;

100 else

101 -- Set PC to point to byte following immediate.

102 alu_mode <= ALU_ADD ;

103 alu_source_a <= ALU_A_PC ;

104 alu_source_b <= ALU_B_PGI ;

105 pgi_source <= PGI_ONE ;

106 pc_source <= ALU_TO_PC ;

107 end if ;

108 CLOCK

109

110 -- Store 4th byte

111 immediate_data_source <= MDR_TO_IDR_0 ;

112

113 RETURN

114 CLOCK

115

I.17. Source code of jmp.sm
1 LABEL jmp

2

3 -- Work out the effective address

4 -- No need to handle register direct modes - they are

5 -- not supported.

6 CALL decode_ea

7 CLOCK

8

9 -- PC <- OA - jump to the appropriate place.

10 alu_mode <= ALU_ADD ;

11 alu_source_a <= ALU_A_PGI ;

12 alu_source_b <= ALU_B_OA ;

13 pgi_source <= PGI_ZERO ;

14 pc_source <= ALU_TO_PC ;

15

16 RETURN

17 CLOCK

18

I.18. Source code of jsr.sm
1 LABEL jsr

2

3 -- Machine for JSR (Jump to Subroutine)

4 -- The effect is:

5 -- SP <- SP - 4

6 -- M[SP] <- PC for next instruction

7 -- PC <- EA

164

8

9 -- Decrement SP: SP <- SP - 4

10 -- We would normally have to ensure that register B was

11 -- set to the stack pointer before doing this, so that its

12 -- value was fetched correctly. Fortunately, the default

13 -- setting for register B (IR field 11 to 9) is always ’111’

14 -- for this opcode - i.e. already the stack pointer.

15

16 operation_size_control <= SET_TO_DWORD ;

17 register_file_source_x <= RF_X_FORCE_TO_SP ;

18 register_file_source_y <= RF_Y_FORCE_TO_SP ;

19 CLOCK

20 register_file_source_x <= RF_X_FORCE_TO_SP ;

21 register_file_source_y <= RF_Y_FORCE_TO_SP ;

22 alu_mode <= ALU_SUBTRACT ;

23 alu_reverse_operands <= ’1’ ;

24 alu_source_a <= ALU_A_PGI ;

25 alu_source_b <= ALU_B_ADDRESS_Y ;

26 pgi_source <= PGI_FOUR ;

27 reg_update_address_x <= ’1’ ;

28

29 CLOCK

30

31 -- Decode the effective address of the subroutine.

32 -- We have to leave an extra clock cycle so that the setting

33 -- of register_file_source_x reverts to normal.

34 CALL decode_ea

35 CLOCK

36

37 -- OV <- PC (store the return PC in OV)

38 -- Can’t do this before decode_ea in case there are extension words.

39 alu_mode <= ALU_ADD ;

40 alu_source_a <= ALU_A_PC ;

41 alu_source_b <= ALU_B_PGI ;

42 pgi_source <= PGI_ZERO ;

43 operand_value_source <= ALU_TO_OV ;

44

45 CLOCK

46 -- PC <- OA (store the new PC, from OA)

47

48 alu_mode <= ALU_ADD ;

49 alu_source_a <= ALU_A_PGI ;

50 alu_source_b <= ALU_B_OA ;

51 pgi_source <= PGI_ZERO ;

52 pc_source <= ALU_TO_PC ;

53

54 CLOCK

55 -- OA <- SP (store the new stack pointer in OA)

56 alu_mode <= ALU_ADD ;

57 alu_source_a <= ALU_A_PGI ;

58 alu_source_b <= ALU_B_ADDRESS_Y ;

59 pgi_source <= PGI_ZERO ;

60 operand_address_source <= ALU_TO_OA ;

61

62 -- Now, M[OA] <- OV (store return PC at SP)

63 JUMP store_operand_value

64 CLOCK

65

I.19. Source code of lea.sm
1 LABEL lea

2

3 -- Machine for LEA (Load Effective Address)

4 -- The effect is:

5 -- Address Reg <- EA

6

7 operation_size_control <= SET_TO_DWORD ;

8

9 -- Decode the effective address.

10 -- Note: no need to handle register direct modes.

11 -- They are not supported by LEA.

12 CALL decode_ea

165

13 CLOCK

14

15 -- Now, Address Reg <- EA

16 register_file_source_x <= RF_X_11_TO_9_FIELD ;

17 alu_mode <= ALU_ADD ;

18 alu_source_a <= ALU_A_PGI ;

19 alu_source_b <= ALU_B_OA ;

20 pgi_source <= PGI_ZERO ;

21 reg_update_address_x <= ’1’ ;

22

23 RETURN

24 CLOCK

25

I.20. Source code of link.sm
1 LABEL link

2 -- This machine is for the LINK instruction.

3 -- SP <- SP - 4

4 -- M[SP] <- ARF_A

5 -- ARF_A <- SP

6 -- SP <- SP + IDR

7

8 -- Is this a long link or a word link?

9 if (instruction_register (10) = ’1’)

10 then

11 -- word link.

12 operation_size_control <= SET_TO_WORD ;

13 else

14 -- long link.

15 operation_size_control <= SET_TO_DWORD ;

16 end if ;

17

18 CALL fetch_immediate_data

19 CLOCK

20 operation_size_control <= SET_TO_DWORD ;

21

22 -- Ensure that register file output A is the stack pointer.

23 register_file_source_x <= RF_X_FORCE_TO_SP ;

24

25 -- Set register file output B to be the address register

26 -- in use for the link.

27 register_file_source_y <= RF_Y_2_TO_0_FIELD ;

28

29 CLOCK

30 -- SP <- SP - 4

31 -- at the same time, do OA <- SP - 4

32 register_file_source_x <= RF_X_FORCE_TO_SP ;

33 register_file_source_y <= RF_Y_2_TO_0_FIELD ;

34 alu_mode <= ALU_SUBTRACT ;

35 alu_source_a <= ALU_A_ADDRESS_X ;

36 alu_source_b <= ALU_B_PGI ;

37 pgi_source <= PGI_FOUR ;

38 reg_update_address_x <= ’1’ ;

39 operand_address_source <= ALU_TO_OA ;

40 CLOCK

41 -- M[SP] <- An.

42 -- This is done by first copying An to OV.

43 register_file_source_x <= RF_X_FORCE_TO_SP ;

44 register_file_source_y <= RF_Y_2_TO_0_FIELD ;

45 alu_mode <= ALU_ADD ;

46 alu_source_a <= ALU_A_PGI ;

47 alu_source_b <= ALU_B_ADDRESS_Y ;

48 pgi_source <= PGI_ZERO ;

49 operand_value_source <= ALU_TO_OV ;

50 -- Now store OV at OA. Thus, M[SP] <- An

51 CALL store_operand_value

52 CLOCK

53 -- An <- SP

54 register_file_source_x <= RF_X_EA_REG ;

55 register_file_source_y <= RF_Y_FORCE_TO_SP ;

56 alu_mode <= ALU_ADD ;

57 alu_source_a <= ALU_A_PGI ;

166

58 alu_source_b <= ALU_B_ADDRESS_Y ;

59 pgi_source <= PGI_ZERO ;

60 reg_update_address_x <= ’1’ ;

61 CLOCK

62 register_file_source_x <= RF_X_FORCE_TO_SP ;

63 register_file_source_y <= RF_Y_FORCE_TO_SP ;

64 CLOCK

65 -- SP <- SP + d

66 register_file_source_x <= RF_X_FORCE_TO_SP ;

67 register_file_source_y <= RF_Y_FORCE_TO_SP ;

68 alu_mode <= ALU_ADD ;

69 alu_source_a <= ALU_A_ADDRESS_X ;

70 alu_source_b <= ALU_B_IDR ;

71 -- Use IDR for displacement.

72 reg_update_address_x <= ’1’ ;

73

74 RETURN

75 CLOCK

76

I.21. Source code of move family.sm
1 LABEL move_family

2

3 -- Full MOVE: Can move data at any EA to any other EA.

4

5 -- What is the size of the operation?

6 case instruction_register (13 downto 12) is

7 when "01" => -- Byte mode MOVE

8 operation_size_control <= SET_TO_BYTE ;

9 when "11" => -- Word mode MOVE

10 operation_size_control <= SET_TO_WORD ;

11 when others => -- Long mode MOVE

12 operation_size_control <= SET_TO_DWORD ;

13 end case ;

14

15 -- Decode the source address, storing the data at it in OV.

16

17 CALL decode_ea_and_dereference

18 CLOCK

19

20 -- Then decode the destination address, and store OV at OA.

21 ea_move_destination_control_set <= ’1’ ;

22

23 -- Update CCRs

24 alu_mode <= ALU_ADD_UPDATE_CCRS ;

25 alu_source_a <= ALU_A_OPERAND_VALUE ;

26 alu_source_b <= ALU_B_PGI ;

27 pgi_source <= PGI_ZERO ;

28

29 JUMP decode_ea_and_store

30 CLOCK

31

I.22. Source code of moveq.sm
1 LABEL moveq

2

3 -- MOVEQ: Move an immediate (part of the opcode, low byte)

4 -- to a data register.

5

6 -- operation: DRF(B) <- LOW_BYTE_OF_IR

7 -- Always dword-sized

8

9 operation_size_control <= SET_TO_DWORD ;

10 alu_mode <= ALU_ADD ;

11 alu_source_a <= ALU_A_PGI ;

12 pgi_source <= PGI_ZERO ;

13 alu_source_b <= ALU_B_LOW_BYTE_OF_IR ;

14

15 -- Set A=B so that DRF(B) is updated.

167

16 register_file_source_x <= RF_X_11_TO_9_FIELD ;

17 reg_update_data_x <= ’1’ ;

18 RETURN

19 CLOCK

20

I.23. Source code of nop.sm
1 LABEL nop

2 -- No-op

3 RETURN

4 CLOCK

5

I.24. Source code of pea.sm
1 LABEL pea

2

3 -- Machine for PEA (Push Effective Address)

4 -- The effect is:

5 -- SP <- SP - 4

6 -- M[SP] <- EA

7

8 -- Prepare to decrement the stack pointer

9 register_file_source_x <= RF_X_FORCE_TO_SP ;

10 operation_size_control <= SET_TO_DWORD ;

11

12 CLOCK

13

14 -- SP <- SP - 4

15 register_file_source_x <= RF_X_FORCE_TO_SP ;

16 alu_mode <= ALU_SUBTRACT ;

17 alu_source_a <= ALU_A_ADDRESS_X ;

18 alu_source_b <= ALU_B_PGI ;

19 pgi_source <= PGI_FOUR ;

20 reg_update_address_x <= ’1’ ;

21

22 CLOCK

23 register_file_source_x <= RF_X_EA_REG ;

24

25 -- Decode the effective address.

26 -- Note: no need to handle register direct modes.

27 -- They are not supported by PEA.

28 CALL decode_ea

29

30 CLOCK

31

32 -- Move OV <- OA

33 alu_mode <= ALU_ADD ;

34 alu_source_a <= ALU_A_PGI ;

35 alu_source_b <= ALU_B_OA ;

36 pgi_source <= PGI_ZERO ;

37 operand_value_source <= ALU_TO_OV ;

38 register_file_source_y <= RF_Y_FORCE_TO_SP ;

39

40 CLOCK

41

42 -- Move OA <- SP

43 register_file_source_y <= RF_Y_FORCE_TO_SP ;

44 alu_mode <= ALU_ADD ;

45 alu_source_a <= ALU_A_PGI ;

46 alu_source_b <= ALU_B_ADDRESS_Y ;

47 pgi_source <= PGI_ZERO ;

48 operand_address_source <= ALU_TO_OA ;

49

50 -- Store OV at OA: M[OV] <- OA.

51 JUMP store_operand_value

52 CLOCK

53

168

I.25. Source code of rts.sm
1 LABEL rts

2

3 -- Machine for RTS (return from subroutine)

4 -- The effect is:

5 -- PC <- M[SP]

6 -- SP <- SP + 4

7

8 -- Prepare to do OA <- SP

9 register_file_source_y <= RF_Y_FORCE_TO_SP ;

10 operation_size_control <= SET_TO_DWORD ;

11 CLOCK

12

13 -- Move OA <- SP

14 register_file_source_y <= RF_Y_FORCE_TO_SP ;

15 alu_mode <= ALU_ADD ;

16 alu_source_a <= ALU_A_PGI ;

17 alu_source_b <= ALU_B_ADDRESS_Y ;

18 pgi_source <= PGI_ZERO ;

19 operand_address_source <= ALU_TO_OA ;

20

21 -- Dereference OA to OV.

22 CALL load_operand_value

23 CLOCK

24

25 -- PC <- OV

26 alu_mode <= ALU_ADD ;

27 alu_source_a <= ALU_A_OPERAND_VALUE ;

28 alu_source_b <= ALU_B_PGI ;

29 pgi_source <= PGI_ZERO ;

30 pc_source <= ALU_TO_PC ;

31

32 register_file_source_x <= RF_X_FORCE_TO_SP ;

33

34 CLOCK

35 -- SP <- SP + 4

36 register_file_source_x <= RF_X_FORCE_TO_SP ;

37 alu_mode <= ALU_ADD ;

38 alu_source_a <= ALU_A_ADDRESS_X ;

39 alu_source_b <= ALU_B_PGI ;

40 pgi_source <= PGI_FOUR ;

41 reg_update_address_x <= ’1’ ;

42

43 RETURN

44 CLOCK

45

I.26. Source code of scc.sm
1 LABEL scc

2

3 -- Machine for S<cc> "Set on condition code"

4 -- If the condition code is true then the EA is filled with

5 -- ones, otherwise it is filled with zeroes. Size: byte.

6

7 -- Zero the OV register.

8 operation_size_control <= SET_TO_BYTE ;

9 alu_mode <= ALU_ADD ;

10 alu_source_a <= ALU_A_PGI ;

11 alu_source_b <= ALU_B_PGI ;

12 pgi_source <= PGI_ZERO ;

13 operand_value_source <= ALU_TO_OV ;

14 CLOCK

15

16 -- So the ALU output will be either -1 (all 1s) or

17 -- 0 according to the truth of the condition. Where should the

18 -- output be sent?

19

20 case ea_mode is

21 when "000" => reg_update_data_x <= ’1’ ;

22 alu_mode <= ALU_SUBTRACT ;

23 alu_source_a <= ALU_A_OPERAND_VALUE ;

169

24

25 if (condition_true = ’1’)

26 then

27 alu_source_b <= ALU_B_PGI ;

28 pgi_source <= PGI_ONE ;

29 else

30 alu_source_b <= ALU_B_PGI ;

31 pgi_source <= PGI_ZERO ;

32 end if ;

33 RETURN

34

35 -- Mode 001 is not allowed.

36 when others =>

37 CALL decode_ea

38

39 end case ;

40 CLOCK

41

42 -- It’s a memory address

43 alu_mode <= ALU_SUBTRACT ;

44 alu_source_a <= ALU_A_OPERAND_VALUE ;

45

46 if (condition_true = ’1’)

47 then

48 alu_source_b <= ALU_B_PGI ;

49 pgi_source <= PGI_ONE ;

50 else

51 alu_source_b <= ALU_B_PGI ;

52 pgi_source <= PGI_ZERO ;

53 end if ;

54 operand_value_source <= ALU_TO_OV ;

55

56 JUMP store_operand_value

57 CLOCK

58

I.27. Source code of start.sm
1 LABEL start

2

3 -- Initialise the processor by clearing the PC register.

4 -- PC <- 0

5 alu_mode <= ALU_ADD ;

6 alu_source_a <= ALU_A_PGI ;

7 alu_source_b <= ALU_B_PGI ;

8 pgi_source <= PGI_ZERO ;

9 pc_source <= ALU_TO_PC ;

10

11 -- Now: instruction fetch. Essentially, the following operations

12 -- are done in parallel.

13 -- IR <- [PC].

14 -- PC <- PC + 2

15 JUMP fetch_ir_high

16 CLOCK

17

18 LABEL pause_state

19 if (run_single_instruction = ’1’)

20 and (button_clock_event = ’0’)

21 then

22 -- We are in instruction stepping mode

23 -- and waiting for the step button to be pressed.

24 JUMP pause_state

25 else

26 button_clock_event_clear_2 <= ’1’ ;

27 end if ;

28 CLOCK

29

30 operation_size_control <= SET_TO_IR ;

31

32 -- Instruction decode!

33 IDECODE

34 CLOCK

35

170

36 LABEL fetch_ir_high

37 -- Prepare to fetch 1st byte of next instruction

38 mar_source <= PC_TO_MAR ;

39

40 -- Increment PC to point to 2nd byte

41 alu_mode <= ALU_ADD ;

42 alu_source_a <= ALU_A_PC ;

43 alu_source_b <= ALU_B_PGI ;

44 pgi_source <= PGI_ONE ;

45 pc_source <= ALU_TO_PC ;

46 CLOCK

47

48 LABEL fetch_ir_low

49 -- Store the 1st byte.

50 ir_source <= MDR_TO_IR_1 ;

51

52 -- Prepare to fetch the 2nd byte.

53 mar_source <= PC_TO_MAR ;

54

55 -- Increment PC to point to byte following instruction

56 alu_mode <= ALU_ADD ;

57 alu_source_a <= ALU_A_PC ;

58 alu_source_b <= ALU_B_PGI ;

59 pgi_source <= PGI_ONE ;

60 pc_source <= ALU_TO_PC ;

61

62 -- Extra per-instruction initialisation

63 ea_move_destination_control_clear <= ’1’ ;

64 restore_pc_after_immediate_fetch_clear <= ’1’ ;

65

66 CLOCK

67

68 -- Store the 2nd byte

69 ir_source <= MDR_TO_IR_0 ;

70 JUMP pause_state

71 CLOCK

72

73

74 -- The fault state indicates a bug in the microcode or an illegal opcode.

75

76 LABEL fault

77 JUMP fault

78 CLOCK

79

80

I.28. Source code of tst.sm
1 LABEL tst

2

3 -- Machine for TST - which compares an effective address with

4 -- zero, setting the CCs appropriately.

5

6 operation_size_control <= SET_TO_IR ;

7

8 -- Operation is EA <op> ZERO

9 -- ALU_CLR_FAMILY is used as the ALU family because

10 -- it will program the CCRs. It may add or subtract - but it

11 -- doesn’t matter which, since operand B is zero.

12

13 case ea_mode is

14 when "000" =>

15 -- DRF(A) <op> ZERO

16 alu_mode <= ALU_CLR_FAMILY ;

17 alu_source_a <= ALU_A_DATA_X ;

18 alu_source_b <= ALU_B_PGI ;

19 pgi_source <= PGI_ZERO ;

20 RETURN

21 -- when "001" => not supported

22 when others =>

23 CALL decode_ea_and_dereference

24 end case ;

25

171

26 CLOCK

27

28 -- EA <op> ZERO

29 alu_mode <= ALU_CLR_FAMILY ;

30 alu_source_a <= ALU_A_OPERAND_VALUE ;

31 alu_source_b <= ALU_B_PGI ;

32 pgi_source <= PGI_ZERO ;

33 RETURN

34 CLOCK

35

I.29. Source code of unlk.sm
1 LABEL unlk

2 -- This machine is for the UNLK instruction.

3 -- SP <- ARF_A

4 -- ARF_A <- M[SP]

5 -- SP <- SP + 4

6

7 operation_size_control <= SET_TO_DWORD ;

8

9 CLOCK

10 -- First, do SP <- ARF_A

11 -- Also, OA <- ARF_A

12 register_file_source_x <= RF_X_FORCE_TO_SP ;

13 alu_mode <= ALU_ADD ;

14 alu_source_a <= ALU_A_ADDRESS_X ;

15 alu_source_b <= ALU_B_PGI ;

16 pgi_source <= PGI_ZERO ;

17 reg_update_address_x <= ’1’ ;

18 operand_address_source <= ALU_TO_OA ;

19

20 -- Now, do ARF_A <- M[SP]. First do OV <- M[OA]

21 CALL load_operand_value

22 CLOCK

23 -- Then do ARF_A <- OV

24

25 register_file_source_x <= RF_X_EA_REG ;

26 register_file_source_y <= RF_Y_FORCE_TO_SP ;

27 alu_mode <= ALU_ADD ;

28 alu_source_a <= ALU_A_OPERAND_VALUE ;

29 alu_source_b <= ALU_B_PGI ;

30 pgi_source <= PGI_ZERO ;

31 reg_update_address_x <= ’1’ ;

32

33 CLOCK

34 -- Now SP <- SP + 4.

35 register_file_source_x <= RF_X_FORCE_TO_SP ;

36 register_file_source_y <= RF_Y_FORCE_TO_SP ;

37 alu_mode <= ALU_ADD ;

38 alu_source_a <= ALU_A_PGI ;

39 alu_source_b <= ALU_B_ADDRESS_Y ;

40 pgi_source <= PGI_FOUR ;

41 reg_update_address_x <= ’1’ ;

42

43 RETURN

44 CLOCK

45

172

	Introduction
	Background and Literature
	Soft Processor Cores
	A Field Programmable Gate Array
	VHSIC Hardware Definition Language (VHDL)
	The Motorola 68020

	High-level Project Decisions
	Should the design be based on an existing one?
	Which processor should the soft core be based upon?
	Which processor should be chosen?
	Restating the aims of the project in terms of the chosen processor

	Modular Processor Design Decisions
	Processor Design
	Alternatives to a complete processor implementation
	A real processor
	Instruction Decoder and Control Logic
	Arithmetic and Logic Unit (ALU)
	Register File
	Links between Components

	The framework for a minimal processor
	How this allows an application to be executed
	More complex features of the 68020

	Compiling and testing 68020 programs
	GCC Compilation Issues
	The Emulator

	What features can be modularised?
	Modularisation of Instruction Support
	Modularisation of Registers
	Modularisation of ALU operations
	Modularisation of addressing modes
	Optimisation of the Addressing Width
	Writing the generator

	Designing processor components in VHDL
	Control Logic
	Instruction Decoder
	Arithmetic and Logic Unit (ALU)
	Register File
	Memory implementation
	Debugging Hardware
	Output Device

	The Generator
	How should VHDL files be generated?
	Generator Directives
	Design of a 68020 program scanner

	Designing state machine sequences for instruction execution

	Implementation Phase
	Implementing the fixed parts of the processor
	The Control Logic
	The ALU
	The Register File
	The Memory Subsystem and Output Device
	Debugging Hardware Implementation

	Implementing control line sequences for 68020 instruction execution
	Beginning to implement the 68020 instructions
	Defining the high level register transfers that are required
	Thinking at a lower level
	Implementing the Register Transfers in VHDL
	Implementing the state machine sequences for each instruction

	Implementing the generator
	The state machine generator
	The instruction decoder generator
	The ALU and Effective Address optimisers
	The program scanner

	Evaluation and Conclusion
	Evaluation
	Does the State Machine Compiler work?
	Does the processor work?
	How much FPGA space does the processor take up?
	How does it compare to other soft processor cores?
	How extensible is the processor?
	Summary of the Evaluation

	Conclusion

	Appendices
	Bibliography
	Building-Block Hardware Components that appear in Diagrams
	Multiplexers
	Links between Components
	Registers

	High-Level Register Transfers for Selected Instructions
	Linker scripts and crt0.s
	crt0.s file used for embedded applications
	tiny.x linker script used for the embedded applications

	VHDL sources
	Source code of alu.vhd
	Source code of alu_muxes.vhd
	Source code of alu_segment.vhd
	Source code of clock.vhd
	Source code of debugging.vhd
	Source code of do_branch_process.vhd
	Source code of input.vhd
	Source code of memory.vhd
	Source code of operation_size_control_process.vhd
	Source code of register_file.vhd
	Source code of seven_segment_driver.vhd
	Source code of state_machine_controller.vhd
	Source code of types.vhd
	Source code of xilinx_dp_ram.vhd

	Test Program sources
	Source code of fib.c
	Source code of fvt.s
	Source code of 23instructions.s

	State Machine Compiler sources
	Source code of alu_optimisation.cc
	Source code of alu_optimisation.h
	Source code of control.cc
	Source code of control.h
	Source code of main.cc
	Source code of ndfa_dag.cc
	Source code of ndfa_dag.h
	Source code of ndfa_node.cc
	Source code of ndfa_node.h
	Source code of opcode_map_reader.cc
	Source code of opcode_map_reader.h
	Source code of optimisation.cc
	Source code of optimisation.h
	Source code of programram.cc
	Source code of programram.hh
	Source code of state.cc
	Source code of state.h
	Source code of state_machine.cc
	Source code of state_machine.h
	Source code of state_machine_loader.cc
	Source code of state_machine_loader.h
	Source code of utils.cc
	Source code of utils.h

	The Opcode Database
	Source code of opcode_map

	State Machine Sequences
	Source code of alu_a_family.sm
	Source code of alu_a_family_cmp.sm
	Source code of alu_i_cmp.sm
	Source code of alu_i_family.sm
	Source code of alu_no_cmp.sm
	Source code of alu_no_family.sm
	Source code of alu_q_family.sm
	Source code of branch.sm
	Source code of clr.sm
	Source code of decbranch.sm
	Source code of decode_ea.sm
	Source code of decode_ea_and_dereference.sm
	Source code of decode_ea_and_store.sm
	Source code of fetch_extension_dword.sm
	Source code of fetch_extension_word.sm
	Source code of fetch_immediate_data.sm
	Source code of jmp.sm
	Source code of jsr.sm
	Source code of lea.sm
	Source code of link.sm
	Source code of move_family.sm
	Source code of moveq.sm
	Source code of nop.sm
	Source code of pea.sm
	Source code of rts.sm
	Source code of scc.sm
	Source code of start.sm
	Source code of tst.sm
	Source code of unlk.sm

